Tomographic Galaxy Clustering with the Subaru Hyper Suprime-Cam First Year Public Data Release

ANDRINA NICOLA (PRINCETON UNIVERSITY) with David Alonso and Anze Slosar

GCCL seminar, April 3rd 2020

HSC PHOTOMETRIC CLUSTERING WITHIN LSST DESC

Apply/test LSST pipeline on LSST-like data set

Test viability of tomographic Fourier space analysis for photometric clustering Try to maximize sample size, i.e. go beyond e.g. LRGs, redMaGiC Include small-scale information

Hyper Suprime Cam (HSC) Survey

HSC: 5-year survey, covering 1000 sq. deg. Deep ($r_{\rm lim} \sim 26$), good seeing Precursor to LSST Most analyses focused on 150 sq. deg. (DR1)

Survey table: HSC SSP Footprint: E. Medezinski

SAMPLE SELECTION

HSC DR1 data Galaxies with mag_i < 24.5 4 redshift bins: 0.15-0.50, 0.50-0.75, 0.75-1.00, 1.00-1.50 Photo-z: COSMOS reweighting

Systematics & Signal Maps

Power Spectrum Consistency Tests

COVARIANCE MATRIX

 $\operatorname{Cov}(C_{\ell}, C_{\ell'}) = \operatorname{Cov}_{\mathcal{G}}(C_{\ell}, C_{\ell'}) + \operatorname{Cov}_{\mathcal{NG}}(C_{\ell}, C_{\ell'}) + \operatorname{Cov}_{SSC}(C_{\ell}, C_{\ell'})$

 $\begin{array}{l} \operatorname{Cov}_{\mathrm{G}}(C_{\ell},C_{\ell'}) & : \text{ computed analytically, accounting for survey geometry (NaMaster)} \\ \\ \operatorname{Cov}_{\mathrm{NG}}(C_{\ell},C_{\ell'}) & : \text{ computed analytically using Halo Model/HOD (e.g.$ *Krause et al., 2017* $)} \end{array}$

Theoretical Modeling

Small-scale clustering (k_{max} ~ 1 Mpc⁻¹) Halo model (e.g. *Seljak 2000, Peacock et al., 2000, Ma et al., 2000*) Halo occupation distribution (e.g. *Berlind & Weinberg, 2002, Zheng et al., 2005*)

HOD MODELING DETAILS

Redshift-dependent 6-parameter HOD model $\bar{N}_g(M) = \bar{N}_c(M)(f_c + \bar{N}_s(M))$ centrals: $\bar{N}_c(M) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\log M - \log M_{\min}(z)}{\sigma_{\ln M}} \right) \right]$ satellites: $\bar{N}_s(M) = \Theta(M - M_0(z)) \left(\frac{M - M_0(z)}{M_1(z)} \right)^{\alpha}$ where

$$\log M_i(z) = \mu_i + \mu_{i,p} \left(\frac{1}{1+z} - \frac{1}{1+z_p} \right), \ i \in [\min, 0, 1]$$

Fiducial model

Redshift-dependent 3(+3)-parameter HOD: $M_{\min}(z) \ M_0(z) \ M_1(z)$ Remaining HOD parameters fixed to $f_c = 1 \ \alpha = 1 \ \sigma_{\ln M} = 0.4$ Cosmological parameters fixed to Planck 2018 Photo-z uncertainties: p(z) shift Δz_i & width $z_{w,i}$

Power Spectra

HOD CONSTRAINTS

HOD REDSHIFT EVOLUTION

Properties of Galaxy Sample

Photo-z Systematics

STABILITY OF RESULTS

SUMMARY

Photometric clustering measurement with HSC DR1 data using LSST tools Constraints on HOD & photo-z systematics parameters Promising for future photometric clustering analyses Future work: joint analysis HSC & ACT, color-dependent clustering with HSC

BACKUP SLIDES

Power Spectrum Consistency Tests

Power Spectra

Analysis Variants

Analysis variant	χ^2/ν	$\mu_{\min,p}$	$\mu_{ m min}$	$\mu_{1,p}$	μ_1	A_{μ}	Ω_c	σ_8
fiducial	86.2/80 (0.30)	$-0.491^{+2.09}_{-2.02}$	$11.88^{+0.22}_{-0.23}$	$0.933^{+2.67}_{-2.56}$	$13.08^{+0.27}_{-0.28}$	-	-	-
auto	19.2/25 (0.79)	$-0.886\substack{2.19\\-2.17}$	11.82 ± 0.28	$0.368_{-2.64}^{+\overline{2.67}}$	12.99 ± 0.33	-	-	-
G cov	$^{87.2}/\!\!80~(0.27)$	$-0.675^{+2.11}_{-2.08}$	$11.88^{+0.23}_{-0.24}$	$0.70^{+2.67}_{-2.61}$	$13.08\substack{+0.28\\-0.29}$	-	-	-
G+SSC cov	$^{86.2}/\!\!80~(0.30)$	$-0.433^{+1.96}_{-1.90}$	11.89 ± 0.20	$0.982^{+2.55}_{-2.44}$	$13.09^{+0.24}_{-0.25}$	-	-	-
no $z_{w,i}$	$^{88.0}/\!\!84~(0.36)$	$-0.855^{+0.648}_{-0.653}$	11.87 ± 0.11	$0.327^{+0.889}_{-0.900}$	13.07 ± 0.15	-	-	-
no $z_{w,i}, \Delta z_i$	$^{95.2}/\!\!88~(0.28)$	$-1.09\substack{+0.624\\-0.771}$	11.78 ± 0.13	$-0.108\substack{+0.727\\-0.940}$	12.93 ± 0.16	-	-	-
bins $= 0, 1, 2$	44.4/43 (0.41)	$-0.354^{+2.34}_{-2.25}$	$11.88^{+0.22}_{-0.23}$	$0.624^{+2.87}_{-2.75}$	$13.09\substack{+0.27\\-0.28}$	-	-	-
bins $= 1, 2, 3$	44.4/46~(0.54)	$1.20^{+2.88}_{-2.94}$	$11.97\substack{+0.31 \\ -0.36}$	$3.46^{+3.66}_{-3.63}$	$13.23_{-0.43}^{+0.39}$	-	-	-
$\mathrm{pz} = \mathtt{Ephor}_\mathtt{AB}$	$93.6/80 \ (0.14)$	$0.270^{+2.05}_{-1.88}$	$12.14_{-0.17}^{+0.19}$	$1.82^{+2.87}_{-2.59}$	$13.39^{+0.24}_{-0.23}$	-	-	-
$\mathrm{pz}=\mathtt{Ephor}$	$^{107.2}/\!80~(0.023)$	$0.895^{+1.97}_{-2.03}$	12.15 ± 0.17	$2.64^{+2.71}_{-2.80}$	$13.40^{+0.23}_{-0.22}$	-	-	-
$\mathrm{pz}=\mathtt{DEmP}$	$^{105.4}/\!\!80~(0.031)$	$0.616^{+1.90}_{-1.88}$	$12.07\substack{+0.17\\-0.16}$	$2.29^{+2.59}_{-2.55}$	$13.30\substack{+0.22\\-0.21}$	-	-	-
pz = FRANKEN-Z	90.8/80 (0.19)	$0.0421^{+1.97}_{-1.76}$	$12.12_{-0.16}^{+0.18}$	$1.41^{+2.75}_{-2.44}$	$13.38^{+0.23}_{-0.22}$	-	-	-
fiducial magn.	72.8/80 (0.70)	$-0.358^{+2.56}_{-2.32}$	$11.94_{-0.22}^{+0.21}$	$1.04^{+3.32}_{-2.97}$	$13.16\substack{+0.26\\-0.27}$	-	-	-
fit magn., auto+cross	$^{69.0}/_{79}$ (0.78)	$-1.78^{+2.13}_{-2.35}$	$11.79_{-0.27}^{+0.26}$	$-0.724^{+2.60}_{-2.74}$	$12.98\substack{+0.30\\-0.31}$	2.18 ± 0.74	-	-
fit magn., auto	$^{19.4/24}(0.73)$	$-0.844^{+2.29}_{-2.17}$	11.81 ± 0.26	$0.409^{+2.80}_{-2.65}$	12.98 ± 0.31	$0.627^{+2.71}_{-2.61}$	-	-
fit cosmo	^{84.4} /78 (0.29)	$0.0143^{+2.72}_{-2.53}$	$11.79_{-0.24}^{+0.27}$	$1.63^{+3.44}_{-3.20}$	$12.96\substack{+0.36\\-0.35}$	-	0.237 ± 0.025	$0.807\substack{+0.149 \\ -0.143}$

Photo-z Systematics I

Photo-z Systematics II

Photo-z Systematics III

Importance of Cross-Correlations

