KIDS+ & : constraints on Horndeski gravity from combined large-scale structure probes

Alessio Spurio Mancini

Department of Physics & Astronomy University College London

with F. Köhlinger, B. Joachimi and others

based on Spurio Mancini et al., MNRAS 490, Dec. 2019

GCCL seminar 3rd July 2020

The idea

We constrain parameters describing Horndeski gravity

with a <u>3x2pt</u> cross-correlation analysis of <u>cosmic shear</u>, <u>galaxy-galaxy lensing</u> and <u>galaxy clustering</u> power spectra from the KiDS and GAMA surveys

 \rightarrow First constraints on Horndeski gravity from cosmic shear!

ΛCDM and beyond

- Cosmic acceleration: $\Lambda / DE / MG$?
- Tensions: (early vs late-time H_0) + CMB vs LSS $\Omega_{
 m m}$ σ_8

- Keep testing gravity on cosmological scales!

Introducing Horndeski Gravity

- Too many DE/MG models to test
- Horndeski Lagrangian: **most general** $g_{\mu\nu} + \phi + \text{local} + \text{Lorentz} + 4D$ with 2nd order e.o.m.

• This covers the **majority of models** on the market: f(R), quintessence, Brans-Dicke, Galileons, k-essence, Chameleons, etc...

• Avoids Ostrogradski's instabilities, i.e. ghost degrees of freedom

• First found by Horndeski 1974, then rediscovered by Deffayet et al. 2011

Constraining Horndeski Gravity

• Four functions of time describe linear perturbations in Horndeski gravity (Bellini & Sawicki 2014)

Cannot be $\boldsymbol{\triangleleft} \boldsymbol{\circ} \alpha_K(\tau)$ constrained with LSS observables and uncorrelated with $\alpha_{\rm B}$, $\alpha_{\rm M}$, $\alpha_{\rm T}$ $\boldsymbol{\circ} \alpha_M(\tau)$ Constraints from GW170817 + $\boldsymbol{\triangleleft} \boldsymbol{\circ} \alpha_T(\tau)$

GRB170817A (see e.g. Baker et al. 2017)

kineticity

braiding

Planck-mass run rate

tensor speed excess

- $\Lambda CDM = \{0, 0, 0, 0\}$
- Assume a time parameterization, e.g. $\alpha_B(\tau) = \hat{\alpha}_B \Omega_{DE}(\tau), \quad \alpha_M(\tau) = \hat{\alpha}_M \Omega_{DE}(\tau)$

constraints on parameters $\hat{lpha}_B, \hat{lpha}_M$

KiDS+GAMA

KiDS+GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing and angular clustering

Edo van Uitert^{1*}, Benjamin Joachimi¹[†], Shahab Joudaki^{2,3,4}, Catherine Heymans⁵, Fabian Köhlinger^{6,7}, Marika Asgari⁵, Chris Blake², Ami Choi⁸, Thomas Erben⁹, Daniel J. Farrow¹⁰, Joachim Harnois-Déraps⁵, Hendrik Hildebrandt⁹, Henk Hoekstra⁶, Thomas D. Kitching¹¹, Dominik Klaes⁹, Konrad Kuijken⁶, Julian Merten⁴, Lance Miller⁴, Reiko Nakajima⁹, Peter Schneider⁹, Edwin Valentijn¹², Massimo Viola⁶

Analysis setup

Modelling

Developed a new likelihood module for MontePython, including:

- linear matter power spectrum from HiClass (Zumalacarregui et al. 2017), i.e. Class for Horndeski. Nonlinear corrections from HMcode, including one parameter to account for <u>baryon feedback</u>
- <u>intrinsic alignments</u>: tidal model (for all galaxies) including non-linear extension with free amplitude
- linear effective <u>galaxy bias</u> for each spectroscopic sample
- <u>screening mechanism</u>: GR recovered in small scales/high density environments (e.g. Solar System). Implemented as phenomenological scale-dependent filter with screening scale

ASM et al., MNRAS 490, Dec 2019

Comparison with van Uitert et al. (2018) in Λ CDM

Alessio Spurio Mancini

ASM et al., MNRAS 490, Dec 2019

Constraints from LSS

Comparison of constraints from LSS and CMB

ΛCDM

Larger parameter space and shift of best fit values reduce LSS-CMB tension

ASM et al., MNRAS 490, Dec 2019

Comparison of constraints from LSS and CMB

Horndeski

ΛCDM

Constraints from LSS + CMB

Cosmological parameters

Astrophysical parameters

- Tension reduced \rightarrow run together LSS and CMB MCMC chains in Horndeski gravity
- Contours (in particular for standard cosmological parameters) shrink noticeably due to CMB constraining power

ASM et al., MNRAS 490, Dec 2019

Constraints on Horndeski parameters from CMB, LSS and CMB+LSS

ASM et al., MNRAS 490, Dec 2019

Conclusions

- **3x2pt** analysis of **KiDS** + **GAMA** to constrain **Horndeski gravity** (majority of DE/MG models). First constraints on Horndeski gravity from cosmic shear
- Constraints on Horndeski parameters **compatible with \LambdaCDM**
- Reduced tension in $\Omega_{\rm m} \sigma_8$ plane in Horndeski gravity
- Modelling of baryon feedback, intrinsic alignments, galaxy bias, screening mechanism. **Likelihood code available** at

github.com/alessiospuriomancini/KiDSHorndeski

 \rightarrow can be used with future KiDS data releases or Stage IV surveys data

• Need improved DE/MG prescriptions for non-linearities (see e.g. Giblin et al. 2019)

Conclusions

- **3x2pt** analysis of **KiDS** + **GAMA** to constrain **Horndeski gravity** (majority of DE/MG models). First constraints on Horndeski gravity from cosmic shear
- Constraints on Horndeski parameters **compatible with \LambdaCDM**
- Reduced tension in $\Omega_{\rm m} \sigma_8$ plane in Horndeski gravity
- Modelling of baryon feedback, intrinsic alignments, galaxy bias, screening mechanism. **Likelihood code available** at

github.com/alessiospuriomancini/KiDSHorndeski

 \rightarrow can be used with future KiDS data releases or Stage IV surveys data

• Need improved DE/MG prescriptions for non-linearities (see e.g. Giblin et al. 2019)

Thank you!

a.spuriomancini@ucl.ac.uk

