GCCL SEMINAR 06-03-2020

PHOTOMETRIC REDSHIFT CALIBRATION WITH SELF ORGANISING MAPS

ANGUS H WRIGHT RESEARCH FELLOW

GERMAN CENTRE FOR COSMOLOGICAL LENSING (GCCL)

RUHR UNIVERSITÄT BOCHUM, GERMANY

REDSHIFT CALIBRATION FOR COSMIC SHEAR

PHOTOMETRIC REDSHIFTS

Photometric redshift point estimates correlate with, but are not the same as, true redshift.

→ These are not sufficiently accurate for cosmic shear.

Wright et al (2019)

DIRECT REDSHIFT CALIBRATION FOR COSMIC SHEAR

SPECTROSCOPIC CALIBRATION

One calibration option is to use (high accuracy) spectroscopic redshifts to construct redshift distributions for the cosmic-shear (i.e. wide-field photometric) galaxies.

- → Requires a method of mapping spectra onto wide-field galaxies
- → Requires a representative spec-z sample *or* a method for determining which photometric sources are matched

DIRECT REDSHIFT CALIBRATION FOR COSMIC SHEAR

SPECTROSCOPIC CALIBRATION

One calibration option is to use (high accuracy) spectroscopic redshifts to construct redshift distributions for the cosmic-shear (i.e. wide-field photometric) galaxies.

- → Requires a method of mapping spectra onto wide-field galaxies
- → Requires a representative spec-z sample *or* a method for determining which photometric sources are matched

K-NEAREST-NEIGHBOUR ASSOCIATION

K-NEAREST-NEIGHBOUR ASSOCIATION

K-NEAREST-NEIGHBOUR ASSOCIATION

K-NEAREST-NEIGHBOUR ASSOCIATION

KIDS SOM REDSHIFT CALIBRATION (SOM)

A NOVEL APPROACH

Self organising maps present another method of associating galaxies in distinct catalogues. The weighting mathematics remains the same, but the form of the association changes.

Image credit: Davidzon et al (2019)

REDSHIFT CALIBRATION WITH SELF-ORGANISING MAPS A NOVEL APPROACH

Associations are based on the self-similarity between the sources in respect to the colour-colour manifold. Allows variable Nspec. Number of neighbours choice is converted to SOM pixel choice.

Direct knowledge of cells with shear sources and no spec-z

REDSHIFT CALIBRATION WITH SELF-ORGANISING MAPS A NOVEL APPROACH

Associations are based on the self-similarity between the sources in respect to the colour-colour manifold. Allows variable Nspec. Number of neighbours choice is converted to SOM pixel choice.

Direct knowledge of cells with shear sources and no spec-z

The choice of pixel scale imposes limitation on the mapping of the hyper-surface.

The choice of pixel scale imposes limitation on the mapping of the hyper-surface.

The choice of pixel scale imposes limitation on the mapping of the hyper-surface.

The choice of pixel scale imposes limitation on the mapping of the hyper-surface.

The choice of pixel scale imposes limitation on the mapping of the hyper-surface.

The choice of association number is then relevant.

└→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

The choice of association number is then relevant.

→An arbitrary number of associations can be constructed using hierarchical clustering of the SOM cells

SOM PIXEL CLUSTERING

The goal is redshift calibration. So we can select the cluster number that produces unchanging mean-z results. \rightarrow mean-z is quite stable, neff is not Wright et al (submitted)

REDSHIFT CALIBRATION REQUIREMENTS The reweighting method requires that the associations have ~unique redshifts

TOMOGRAPHIC BINNING

With tomographic binning, we apply a strong redshift-dependant selection effect. This modifies the N(z) of the SOM pixels, and necessitates like-for-like binning of the spectra. Not previously implemented in kNN methods Wright et al (submitted)

TESTING THE DIRECT CALIBRATION

TESTING THE DIRECT CALIBRATION

100 spectroscopic lines-of-sight & KiDS-like photometry using MICE2

KIDS-LIKE DATA

PERFECT SPECTROSCOPY, NOISY PHOTOMETRY

BIASED SPECTROSCOPY, NOISELESS PHOTOMETRY

KIDS-LIKE DATA

IMPROVING THE CALIBRATION FURTHER QUALITY CONTROL

The bias in the noisy+spectroscopically selected calibration comes from a small number of biased associations. These can be flagged and removed.

FINAL CALIBRATION STATISTICS

Dataset		Reconstruction Bias $(\Delta \langle z \rangle)$							
Type	Phot	bin1	bin2	bin3	bin4	bin5			
perfect	exact	$0.001 \pm < 10^{-3}$	Ø	Ø	Ø	Ø			
KV450	exact	0.002 ± 0.001	0.002 ± 0.002	0.003 ± 0.001	0.003 ± 0.001	-0.001 ± 0.001			
Perfect	noisy	0.004 ± 0.003	$<10^{-3}\pm0.002$	0.006 ± 0.003	0.004 ± 0.003	0.003 ± 0.003			
KV450	noisy	0.009 ± 0.005	0.004 ± 0.006	0.023 ± 0.006	0.012 ± 0.004	-0.007 ± 0.005			
KV450	noisy+QC1	$<10^{-3}\pm0.005$	0.002 ± 0.006	0.013 ± 0.006	0.011 ± 0.004	-0.006 ± 0.005			
KV450	noisy+QC2	0.002 ± 0.005	0.003 ± 0.006	0.007 ± 0.005	0.009 ± 0.004	-0.006 ± 0.004			
		using kNN association							
KV450	noisy	0.047±0.005	0.025 ± 0.004	$0.032{\pm}0.005$	-0.004 ± 0.004	-0.013 ± 0.004			

The updated calibration produces more accurate calibration, and is able to reach $\sim 0.01 \pm 0.01$ precision in all bins when performing some quality control.

The interpretation is that this reduction in bias comes from the removal of non-represented photometric data

TESTING SPECTRAL DATASETS

different spectroscopic datasets

This dataset has a complicated colour mapping, and various selection biases. How representative is our compilation? Does any one survey dominate our calibration?

TESTING SPECTRAL DATASETS

The spectroscopic data are highly complementary:

rarely do two or more datasets occupy any one SOM pixel

TESTING SPECTRAL DATASETS

9% of our spectroscopic maps pixels are devoid of

spectra.

However these pixels host only 0.5% of the 2D cosmic shear photometric data.

→ Pixels without spectroscopy are overwhelmingly in insignificant parts of the colour-space for KiDS.

TOMOGRAPHIC BINNING

				and the second sec				See See See
Spectroscopic	Training	$f_{\rm pix}$			n'_{eff}/n_{eff}	(%)		
Compilation	Size (all)	(all, %)	All	bin1	bin2	bin3	bin4	bin5
			$z_{\rm B} \in [0.1, 1.2)$	[0.1, 0.3)	[0.3, 0.5)	[0.5, 0.7)	[0.7, 0.9)	[0.9, 1.2)
Full Sample	25373	91.9	99.5	82.7	83.9	84.6	82.7	94.0
CDFS only	2044	17.4	67.3	57.1	58.7	53.2	40.2	54.6
zCOSMOS only	9930	48.5	79.7	74.9	75.3	65.8	60.3	63.2
DEEP2 only	6919	43.7	73.8	17.8	5.5	35.2	68.8	89.5
G15DEEP only	1792	10.1	42.0	63.1	63.6	44.1	19.8	14.0
VVDS only	4688	34.7	81.4	54.9	72.8	70.7	57.3	70.2
without CDFS	23329	89.1	98.9	81.5	82.6	82.2	81.0	93.0
without zCOSMOS	15443	77.6	97.8	76.4	80.0	80.8	78.9	92.6
without DEEP2	18454	73.4	93.4	81.6	83.0	80.4	72.2	80.8
without G15DEEP	23581	90.6	99.5	80.1	83.6	84.3	82.7	94.0
without VVDS	20685	84.7	98.1	81.3	79.5	77.5	80.1	92.9

The 2D-cosmic shear sample is very well represented by the compilation. Tomographic binning reduces the representation as noise begins to play a more significant role.

TOMOGRAPHIC BINNING

Samp/ Photom	All Bins	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
All Spectra	99.5 %	83 %	84 %	85 %	83 %	94 %
Without DEEP2	93 %	82 %	83 %	80 %	72 %	81 %
Without zCOSMOS	98 %	76 %	80 %	81 %	79 %	93 %

The 2D-cosmic shear sample is very well represented by the compilation. Tomographic binning reduces the representation as noise begins to play a more significant role.

TOMOGRAPHIC BINNING

Samp/ Photom	All Bins	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
All Spectra	99.5 %	83 %	84 %	85 %	83 %	94 %
Without DEEP2	93 %	82 %	83 %	80 %	72 %	81 %
Without zCOSMOS	98 %	76 %	80 %	81 %	79 %	93 %

The 2D-cosmic shear sample is very well represented by the compilation. Tomographic binning reduces the representation as noise begins to play a more significant role.

TOMOGRAPHIC BINNING

Samp/ Photom	All Bins	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5		
All Spectra	99.5 %	83 %	84 %	85 %	83 %	94 %		
Without DEEP2	93 %	82 %	83 %	80 %	72 %	81 %		
Without zCOSMOS	98 %	76 %	80 %	81 %	79 %	93 %		
Our highest-z tomographic bin is our <i>best</i> represented.								
DEEP2 informs best the highest redshift bins. zCOSMOS the								
lowest.								

TOMOGRAPHIC BINNING

Samp/ Photom	All Bins	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
All Spectra	99.5 %	83 %	84 %	85 %	83 %	94 %
Without DEEP2	93 %	82 %	83 %	80 %	72 %	81 %
Without zCOSMOS	98 %	76 %	80 %	81 %	79 %	93 %

Our highest-z tomographic bin is our *best* represented.

DEEP2 informs best the highest redshift bins. zCOSMOS the

lowest.

TOMOGRAPHIC BINNING

Our highest-z tomographic bin is our *best* represented.

DEEP2 informs best the highest redshift bins. zCOSMOS the

lowest.

KV450 DATA

NEW COSMOLOGICAL PARAMETER ESTIMATES

KV450 GOLD SAMPLE

SUMMARY

- At KiDS-level noise, the MICE2 redshift distributions are unbiased in all bins except for bin 4, but this is limited to MICE2.
- In the noiseless case, the SOM redshift calibration is unbiased.
- The bin 4 bias is caused by a colour-redshift degeneracy present in the DEEP2 colour-space.
 Future analyses need to be robust to this.
- The dominant factor in the accuracy of the redshift calibration is noise in the spectroscopic compilation.
- The SOM calibration method allows construction of a 100% represented 'gold' sample, which we will use for a reanalysis of KV450 cosmology.
- The KiDS spectroscopic compilation represents >99% of the 2D photometric lens sample.