Response approach to the integrated shear 3-point correlation function

arxiv:2102.10177, arxiv:2201.05607

Anik Halder (USM, LMU)

In collaboration with: Stella Seitz, Oliver Friedrich, Alex Barreira and others!

GCCL seminar, 18.02.2022

 $\hat{\xi}_{\pm}(\theta)$ 2-point shear correlation functions

Probes the projection of the 3D matter power spectrum

Position-dependent (local) shear 2-pt correlation in top-hat aperture **W**

 $\hat{\xi}_{\pm}(\theta; \boldsymbol{\theta_C})$

Aperture mass $M_{
m ap}(oldsymbol{ heta}_{oldsymbol{C}})$

Weighted tangential shear inside a compensated filter **U**

Integrated shear 3-point correlation function (3PCF)

$$\zeta_{\pm}(\theta) \equiv \left\langle M_{\rm ap}(\boldsymbol{\theta}_{C}) \ \hat{\xi}_{\pm}(\theta; \boldsymbol{\theta}_{C}) \right\rangle$$

Direct observables of the shear field

- Higher order statistic of the cosmic shear field
- Probes an integrated quantity of the projected 3D matter bispectrum (or 3-point correlation function)

Intuitively ...

Modelling the integrated shear 3PCF

Shear 2PCFs

$$\xi_{+,\text{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} P_{\kappa,\text{gh}}(l) \ J_0(l\alpha)$$

$$\xi_{-,\text{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} P_{\kappa,\text{gh}}(l) \ J_4(l\alpha)$$

Integrated shear 3PCFs

$$\begin{aligned} \zeta_{\pm,\text{fgh}}(\alpha) &\equiv \left\langle M_{\text{ap},\text{f}}(\theta_C) \ \hat{\xi}_{\pm,\text{gh}}(\alpha;\theta_C) \right\rangle \\ \zeta_{\pm,\text{fgh}}(\alpha) &= \frac{1}{A_{2\text{pt}}(\alpha)} \int \frac{\mathrm{d}l \ l}{2\pi} \ \mathcal{B}_{\pm,\text{fgh}}(l) \ J_0(l\alpha) \\ \zeta_{-,\text{fgh}}(\alpha) &= \frac{1}{A_{2\text{pt}}(\alpha)} \int \frac{\mathrm{d}l \ l}{2\pi} \ \mathcal{B}_{-,\text{fgh}}(l) \ J_4(l\alpha) \end{aligned}$$

Shear 2PCFs

$$\xi_{+,\mathrm{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} P_{\kappa,\mathrm{gh}}(l) \ J_0(l\alpha)$$

$$\xi_{-,\mathrm{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} P_{\kappa,\mathrm{gh}}(l) \ J_4(l\alpha)$$

$$P_{\kappa,\mathrm{gh}}(l) = \int \mathrm{d}\chi \frac{q_{\mathrm{g}}(\chi)q_{\mathrm{h}}(\chi)}{\chi^2} P_{\delta}^{\mathrm{3D}}\left(k = \frac{l}{\chi},\chi\right)$$

Integrated shear 3PCFs

$$\begin{split} \zeta_{\pm,\mathrm{fgh}}(\alpha) &\equiv \left\langle M_{\mathrm{ap,f}}(\theta_C) \ \hat{\xi}_{\pm,\mathrm{gh}}(\alpha;\theta_C) \right\rangle \\ & \left\{ \zeta_{+,\mathrm{fgh}}(\alpha) = \frac{1}{A_{\mathrm{2pt}}(\alpha)} \int \frac{\mathrm{d}l}{2\pi} \ \mathcal{B}_{+,\mathrm{fgh}}(l) \ J_0(l\alpha) \\ & \zeta_{-,\mathrm{fgh}}(\alpha) = \frac{1}{A_{\mathrm{2pt}}(\alpha)} \int \frac{\mathrm{d}l}{2\pi} \ \mathcal{B}_{-,\mathrm{fgh}}(l) \ J_4(l\alpha) \\ & \mathcal{B}_{\pm,\mathrm{fgh}}(l) = \int \mathrm{d}\chi \frac{q_{\mathrm{f}}(\chi)q_{\mathrm{g}}(\chi)q_{\mathrm{h}}(\chi)}{\chi^4} \int \frac{\mathrm{d}^2l_1}{(2\pi)^2} \int \frac{\mathrm{d}^2l_2}{(2\pi)^2} \\ & \times \ B_{\delta}^{\mathrm{3D}}\left(\frac{l_1}{\chi}, \frac{l_2}{\chi}, \frac{-l_1-l_2}{\chi}, \chi\right) e^{2i(\phi_2 \mp \phi_{-1-2})} \\ & \times \ U(l_1)W(l_2+l)W(-l_1-l_2-l) \ . \end{split}$$

Shear 2PCFs

$\xi_{+,\mathrm{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} \ P_{\kappa,\mathrm{gh}}(l) \ J_0(l\alpha)$ $\xi_{-,\mathrm{gh}}(\alpha) = \int \frac{\mathrm{d}l \ l}{2\pi} \ P_{\kappa,\mathrm{gh}}(l) \ J_4(l\alpha)$ ${\mathcal B}$ $P_{\kappa,\text{gh}}(l) = \int d\chi \frac{q_{g}(\chi)q_{h}(\chi)}{\chi^{2}} P_{\delta}^{3D}\left(k = \frac{l}{\chi}, \chi\right)$

3D matter power spectrum

Integrated shear 3PCFs

$$\zeta_{\pm,\mathrm{fgh}}(\alpha) \equiv \left\langle M_{\mathrm{ap,f}}(\theta_{C}) \ \hat{\xi}_{\pm,\mathrm{gh}}(\alpha;\theta_{C}) \right\rangle$$

$$\zeta_{\pm,\mathrm{fgh}}(\alpha) = \frac{1}{A_{2\mathrm{pt}}(\alpha)} \int \frac{\mathrm{d}l \ l}{2\pi} \ \mathcal{B}_{\pm,\mathrm{fgh}}(l) \ J_{0}(l\alpha)$$

$$\zeta_{-,\mathrm{fgh}}(\alpha) = \frac{1}{A_{2\mathrm{pt}}(\alpha)} \int \frac{\mathrm{d}l \ l}{2\pi} \ \mathcal{B}_{-,\mathrm{fgh}}(l) \ J_{4}(l\alpha)$$

$$f_{\pm,\mathrm{fgh}}(l) = \int \mathrm{d}\chi \frac{q_{\mathrm{f}}(\chi)q_{\mathrm{g}}(\chi)q_{\mathrm{h}}(\chi)}{\chi^{4}} \int \frac{\mathrm{d}^{2}l_{1}}{(2\pi)^{2}} \int \frac{\mathrm{d}^{2}l_{2}}{(2\pi)^{2}}$$

$$\times B_{\delta}^{\mathrm{3D}}\left(\frac{l_{1}}{\chi}, \frac{l_{2}}{\chi}, \frac{-l_{1}-l_{2}}{\chi}, \chi\right) e^{2i(\phi_{2}\pm\phi_{-1}-2)}$$

$$\times U(l_{1})W(l_{2}+l)V(-l_{1}-l_{2}-l) .$$
3D matter bispectrum 9/24

Large *I* limit of the integrated shear bispectrum

$$\begin{split} \mathcal{B}_{\pm,\mathrm{fgh}}(l) &= \int \mathrm{d}\chi \, \frac{q_{\mathrm{f}}(\chi) q_{\mathrm{g}}(\chi) q_{\mathrm{h}}(\chi)}{\chi^{4}} \int \frac{\mathrm{d}^{2} l_{1}}{(2\pi)^{2}} \int \frac{\mathrm{d}^{2} l_{2}}{(2\pi)^{2}} \\ &\times B_{\delta}^{\mathrm{3D}} \left(\frac{l_{1}}{\chi}, \frac{l_{2}}{\chi}, \frac{-l_{1}-l_{2}}{\chi}, \chi \right) e^{2i(\phi_{2}\mp\phi_{-1-2})} \\ &\times U(l_{1}) W(l_{2}+l) W(-l_{1}-l_{2}-l) \; . \end{split}$$

Large *I* limit of the integrated shear bispectrum

$$\begin{aligned} \mathcal{B}_{\pm,\mathrm{fgh}}(l) &= \int \mathrm{d}\chi \, \frac{q_{\mathrm{f}}(\chi) q_{\mathrm{g}}(\chi) q_{\mathrm{h}}(\chi)}{\chi^{4}} \int \frac{\mathrm{d}^{2} l_{1}}{(2\pi)^{2}} \int \frac{\mathrm{d}^{2} l_{2}}{(2\pi)^{2}} \\ &\times B_{\delta}^{\mathrm{3D}} \left(\frac{l_{1}}{\chi}, \frac{l_{2}}{\chi}, \frac{-l_{1}-l_{2}}{\chi}, \chi \right) e^{2i(\phi_{2} \mp \phi_{-1-2})} \\ &\times U(l_{1}) W(l_{2}+l) W(-l_{1}-l_{2}-l) \;. \end{aligned}$$

→ For *large l* values, the window functions U and W (low pass filters) impose a *squeezed* condition:

$$|-l_1 - l_2| \approx |l_2| \gg |l_1|$$
 l_1

Response (RF) approach to the squeezed limit of the 3D matter bispectrum

 \rightarrow Squeezed bispectrum can be expressed in terms of power spectrum and its response functions

Response (RF) approach to the squeezed limit of the 3D matter bispectrum

→ Squeezed bispectrum can be expressed in terms of power spectrum and its response functions

$$B_{\delta,\text{RF}}^{3\text{D}}(\boldsymbol{k}_{s},\boldsymbol{k}_{h},-\boldsymbol{k}_{sh},\tau) = \left[R_{1}(k_{h},\tau) + \left(\mu_{\boldsymbol{k}_{h},\boldsymbol{k}_{s}}^{2} - \frac{1}{3}\right)R_{K}(k_{h},\tau)\right]P_{\delta}^{3\text{D}}(k_{h},\tau)P_{\delta,L}^{3\text{D}}(k_{s},\tau) + O\left[\frac{k_{s}^{2}}{k_{h}^{2}}\right]$$

Response (RF) approach to the squeezed limit of the 3D matter bispectrum

Medium-low *I* values of the integrated shear bispectrum

$$\begin{split} \mathcal{B}_{\pm,\mathrm{fgh}}(l) &= \int \mathrm{d}\chi \, \frac{q_{\mathrm{f}}(\chi) q_{\mathrm{g}}(\chi) q_{\mathrm{h}}(\chi)}{\chi^{4}} \int \frac{\mathrm{d}^{2} l_{1}}{(2\pi)^{2}} \int \frac{\mathrm{d}^{2} l_{2}}{(2\pi)^{2}} \\ &\times B_{\delta}^{\mathrm{3D}} \left(\frac{l_{1}}{\chi}, \frac{l_{2}}{\chi}, \frac{-l_{1}-l_{2}}{\chi}, \chi \right) e^{2i(\phi_{2}\mp\phi_{-1-2})} \\ &\times U(l_{1}) W(l_{2}+l) W(-l_{1}-l_{2}-l) \; . \end{split}$$

→ For *medium-low l* values, the **non-squeezed** bispectrum configurations contribute

$$l_1$$
 l_2 l_2

Non-squeezed configurations of the 3D matter bispectrum

→ Use bispectrum fitting function from **Gil-Marin et al. (GM)**

$$B_{\delta,\text{GM}}^{\text{3D}}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3, \tau) = 2 F_2^{\text{eff}}(\boldsymbol{k}_1, \boldsymbol{k}_2, \tau) P_{\delta}^{\text{3D}}(\boldsymbol{k}_1, \tau) P_{\delta}^{\text{3D}}(\boldsymbol{k}_2, \tau)$$

+ cyclic permutations,

$$\begin{split} F_2^{\text{eff}}(\pmb{k}_i, \pmb{k}_j, \tau) &= \quad \frac{5}{7} a(k_i, \tau) a(k_j, \tau) \\ &+ \quad \frac{1}{2} \mu_{\pmb{k}_i, \pmb{k}_j} \left(\frac{k_i}{k_j} + \frac{k_j}{k_i} \right) b(k_i, \tau) b(k_j, \tau), \\ &+ \quad \frac{2}{7} \mu_{\pmb{k}_i, \pmb{k}_j}^2 c(k_i, \tau) c(k_j, \tau) \end{split}$$

Joint model for the matter bispectrum (GM + RF)

$$B^{3D}_{\delta}(k_1, k_2, k_3, \tau) = \begin{cases} B^{3D}_{\delta, RF}, & f_{sq} \ge f^{thr}_{sq} \implies squeezed \\ B^{3D}_{\delta, GM}, & otherwise \end{cases}$$

(i) Given 3 sides \rightarrow arrange in descending order k_h > k_m > k_s

(ii) Define $f_sq = k_m / k_s \rightarrow squeezeness$ parameter — how squeezed a triangle is; larger the value, more squeezed it is!

(iii) If **f_sq** > some **threshold** → use RF; otherwise use GM

Comparison of different bispectra to simulation results

Encoding baryonic effects into the integrated 3PCF

The GM + RF model requires the **non-linear matter power spectrum**

non-squeezed branch

-

-

$$B_{\delta,\text{GM}}^{\text{3D}}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3, \tau) = 2 F_2^{\text{eff}}(\boldsymbol{k}_1, \boldsymbol{k}_2, \tau) P_{\delta}^{\text{3D}}(\boldsymbol{k}_1, \tau) P_{\delta}^{\text{3D}}(\boldsymbol{k}_2, \tau) + \text{cyclic permutations,}$$

squeezed branch

$$B_{\delta,\mathrm{RF}}^{\mathrm{3D}}(\boldsymbol{k}_{s},\boldsymbol{k}_{h},-\boldsymbol{k}_{sh},\tau) = \left[R_{1}(k_{h},\tau) + \left(\mu_{\boldsymbol{k}_{h},\boldsymbol{k}_{s}}^{2} - \frac{1}{3}\right)R_{K}(k_{h},\tau)\right]$$
$$\times P_{\delta}^{\mathrm{3D}}(k_{h},\tau)P_{\delta,L}^{\mathrm{3D}}(k_{s},\tau) + O\left[\frac{k_{s}^{2}}{k_{h}^{2}}\right]$$

→ Encode **baryonic feedback effects** into the integrated 3PCF *through the matter power spectrum*!

→ Use HMCODE (Mead et al. 2015) power spectrum with 2 baryonic parameters

Derivatives with respect to cosmological and baryonic parameters

Fisher forecast on cosmological parameters - with scale cuts

22/24

Fisher forecast on cosmological & baryonic parameters - all scales

23/24

Conclusions and Outlook

- Integrated shear 3PCF analysis only needs the shear 2PCF and the 1-pt aperture mass measurements → easy to measure!
- Holds potential to improve constraints on cosmological as well as baryonic feedback parameters.
- Work in progress:
 - Optimizing the size of filters; investigating the effects of masking
 - Including systematics (photo-z, shear calibration, IA) into modelling