COSMOLOGY FROM WEAK LENSING ALONE AND IMPLICATIONS FOR THE HUBBLE TENSION

Based on arXiv:2104.12880

DR ALEX HALL
SENIOR RESEARCH ASSOCIATE
UNIVERSITY OF EDINBURGH

WHO AM I?

Post-doc at the Institute for Astronomy, University of Edinburgh.

Recent work:

- Weak lensing and galaxy clustering analysis techniques
- Gravitational wave source populations, primordial black holes

Less recent work:

• 21cm intensity mapping, CMB lensing, relativistic effects in cosmology, non-linear modelling, ...

Member of ESA *Euclid* Consortium:

- Co-lead of Weak Lensing Estimators Work Package and Pre-Launch Key Project
- Euclid UK Coordination Group

OUTLINE OF THIS TALK

- CURRENT STATE OF COSMIC SHEAR COSMOLOGY
- WHAT DOES WEAK LENSING TELL US ABOUT THE UNIVERSE?
- WHAT DOES WEAK LENSING NOT TELL US ABOUT THE UNIVERSE?
- WHAT CAN WEAK LENSING TELL US ABOUT THE HUBBLE CONSTANT?

LATEST RESULTS FROM COSMIC SHEAR

$$S_8 \propto \sigma_8 \Omega_m^{0.5}$$

DES Collaboration, Amon et al. 2021

HSC Collaboration, Hamana et al. 2019 (Erratum 2022)

KiDS Collaboration, Asgari et al. 2020

Constrain well the combination

$$S_8 \propto \sigma_8 \Omega_m^{0.5}$$

Poor constraints on almost every other parameter combination

CMB lensing

 $\sigma_{\circ}h$

Constrain well **two** of the combinations

$$\sigma_8 h^{-0.5}$$

 $\Omega_m^{0.6}h$

$$\sigma_8\Omega_m^{0.25}$$

Small-scale amplitude

Peak in the matter power spectrum (in projection)

Amplitude and shape

Galaxy weak lensing

Constrain well the combination

Do we understand this?

We understand this!

Poor constraints on almost every other parameter combination

WHY IS IT IMPORTANT TO UNDERSTAND WHERE PARAMETER INFORMATION COMES FROM?

1) A sanity check on parameter posteriors

WHY IS IT IMPORTANT TO UNDERSTAND WHERE PARAMETER INFORMATION COMES FROM?

2) Lambda-CDM may need modifying

Cuceu et al. 2019

QUESTIONS

I) Where does parameter information come from in weak lensing? Why are some parameter combinations constrained well and some not so well?

2) Tensions: Why does weak lensing tell us about S8 and not H0?

$$C_{\ell}^{\gamma\gamma} = \frac{9}{4} \Omega_m^2 H_0^4 \int_0^{z_s} \frac{\mathrm{d}z}{H(z)} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 P_m \left(\frac{\ell}{r(z)}; z \right)$$

$$C_{\ell}^{\gamma\gamma} = \frac{9}{4} \Omega_m^2 H_0^4 \int_0^{z_s} \frac{\mathrm{d}z}{H(z)} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 P_m \left(\frac{\ell}{r(z)}; z \right)$$

Gravitational potential gradients cause deflection. Gradients in the deflection cause shear.

$$C_{\ell}^{\gamma\gamma} = \frac{9}{4} \Omega_m^2 H_0^4 \int_0^{z_s} \frac{\mathrm{d}z}{H(z)} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 P_m \left(\frac{\ell}{r(z)}; z \right)$$

Gravitational potential gradients cause deflection. Gradients in the deflection cause shear.

Shear distortions are the net effect of many small deflections along the photon path

$$C_{\ell}^{\gamma\gamma} = \frac{9}{4} \Omega_m^2 H_0^4 \int_0^{z_s} \frac{\mathrm{d}z}{H(z)} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 P_m \left(\frac{\ell}{r(z)}; z \right)$$

$$\sim \frac{\Omega_m^2}{\ell^3} \int_0^{z_s} \frac{\mathrm{d}z}{H(z)/H_0} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 [H_0 r(z)]^3 \Delta_m^2 \left(\frac{\ell}{r(z)}; z \right)$$

$$C_{\ell}^{\gamma\gamma} = \frac{9}{4} \Omega_m^2 H_0^4 \int_0^{z_s} \frac{\mathrm{d}z}{H(z)} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 P_m \left(\frac{\ell}{r(z)}; z \right)$$

$$\sim \frac{\Omega_m^2}{\ell^3} \int_0^{z_s} \frac{\mathrm{d}z}{H(z)/H_0} \left[\frac{r(z_s) - r(z)}{r(z_s)} \right]^2 (1+z)^2 [H_0 r(z)]^3 \Delta_m^2 \left(\frac{\ell}{r(z)}; z \right)$$

 $F(z;\Omega_m)\approx F(z)$ for low-redshift lenses

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3}\Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z)\Delta^2 \left(k/H_0 = \frac{\ell}{z}; z\right)$$

$$\Delta^2(k) \equiv \frac{k^3}{2\pi^2} P_m(k) ^{\rm The~dimensionless~matter~power} \\ {\rm spectrum~with~k~in~h/Mpc~units}$$

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} dz \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

$$\Delta^2(k) \equiv \frac{k^3}{2\pi^2} P_m(k) ^{\rm The \ dimensionless \ matter \ power}_{\rm spectrum \ with \ k \ in \ h/Mpc \ units}$$

Physically: lensing introduces no new length scales on top of those already present in the matter distribution.

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

Usual hand-wavy argument:

$$\Delta^2 \sim \sigma_8^2$$

$$\Longrightarrow C_\ell \sim \sigma_8^2 \Omega_m^2$$

i.e. gets the dependence wrong!

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3}\Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z)\Delta^2 \left(k/H_0 = \frac{\ell}{z}; z\right)$$

More precise: Jain & Seljak 1997

$$\xi_{+}(\theta) \sim \sigma_8 \Omega_m^{\alpha}$$

Using linear theory and the Peacock & Dodds 1996 formula for the non-linear P(k)

$$\alpha \lesssim 0.5$$
 $\theta \lesssim 2'$

$$\alpha \approx 0.7 \qquad \theta > 10'$$

See also: Kaiser 1992, Villumsen 1996, Bernardeau, van Waerbeke, Mellier 1997

PARAMETER SENSITIVITY IN THE HALO MODEL

$$\lim_{k \to 0} \Delta_{1H}^2(k) = \frac{(k/h)^3}{2\pi^2} \frac{h^3}{\bar{\rho}^2} \int_0^\infty M^2 n(M) dM$$

$$\lim_{k \to 0} \Delta_{1H}^2(k) \propto (k/h)^3 \sigma_8^{4.3}$$

Most of the contribution to the I-halo amplitude at z=0 comes from Lagrangian scales around 8 Mpc/h.

$$\Delta^2(k/h) \sim \sigma_8^{\alpha} \Omega_m^{\beta} h^{\gamma}$$

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

$$\lim_{k \to 0} \Delta_{1H}^{2}(k) \propto (k/h)^{3} \sigma_{8}^{4.3}$$

$$\implies C_{\ell}^{\gamma\gamma} \propto \Omega_m^2 \sigma_8^{4.3} \sim S_8^4$$

On quasi-linear and I-halo scales, h-dependence drops out completely and dependence is entirely on S8

(Not perfect due to baryon smoothing, finite-redshift effects, 1-halo shape effects, etc.)

AH 2021

$$C_{\ell} \sim \sigma_8^{\alpha} \Omega_m^{\beta} h^{\gamma}$$

Most of the S/N in current surveys comes from here

$$C_{\ell} \sim \sigma_8^{\alpha} \Omega_m^{\beta} h^{\gamma}$$

AH 2021

Most of the S/N in current surveys comes from here

Contaminated by baryon feedback!

$$C_{\ell} \sim \sigma_8^{\alpha} \Omega_m^{\beta} h^{\gamma}$$

Most of the S/N in current surveys comes from here

Contaminated by baryon feedback!

Future wide surveys: break degeneracies! (Known for at least ~ 20 years)

AH 2021

$$C_{\ell} \sim \sigma_8^{\alpha} \Omega_m^{\beta} h^{\gamma}$$

WHY SO INSENSITIVE TO HO?

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

Fixing Ω_m to keep the lensing pre-factors fixed

$$\Longrightarrow \Gamma \equiv \Omega_m h$$
 changes

(the horizon scale at matterradiation equality in h/Mpc units a.k.a. the "shape parameter")

WHY SO INSENSITIVE TO HO?

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

Fixing $\,\Omega_m$ to keep the lensing pre-factors fixed

$$\Longrightarrow \Gamma \equiv \Omega_m h$$
 changes

 H_0 changes the small-scale amplitude at fixed A_s

But the amplitude is also controlled by Ω_m and A_s or σ_8 .

WHY SO INSENSITIVE TO HO?

$$C_{\ell}^{\gamma\gamma} \sim \ell^{-3} \Omega_m^2 \int_0^{z_{\text{max}}} \mathrm{d}z \ F(z) \Delta^2 \left(k/H_0 = \frac{\ell}{z}; z \right)$$

Fixing Ω_m to keep the lensing pre-factors fixed

$$\Longrightarrow \Gamma \equiv \Omega_m h$$
 changes

 H_0 changes the small-scale amplitude at fixed A_s

Fixing the small-scale amplitude leaves only subtle changes to the shape - not well measured by current surveys!

HO INFORMATION IN KV450

Fixed σ_8 and Ω_m

Fixed S_8 and $\Omega_m h^2$

WHAT *CAN* WEAK LENSING TELL US ABOUT HO?

Combined weak lensing probes give us Ω_m

Combine with BAO+BBN, which give contours in the Ω_m - H_0 plane.

CMB-independent probe of *H0* Addison+ 2013, Auborg+ 2015 (DES)

WHAT *CAN* WEAK LENSING TELL US ABOUT HO?

Galaxy lensing adds basically nothing to H0 from CMB lensing + BAO.

Do get separate Ω_m and σ_8 constraints.

AH 2021

BAO + BBN + WL:

 $H_0 = 67.4 \pm 0.9 \,\mathrm{km s^{-1} Mpc^{-1}}$

WHAT *CAN* WEAK LENSING TELL US ABOUT HO?

Galaxy lensing adds basically nothing to H0 from CMB lensing + BAO.

Do get separate Ω_m and σ_8 constraints.

AH 2021

BAO + BBN + WL:

 $H_0 = 70.0 \pm 6.5 \,\mathrm{km s^{-1} Mpc^{-1}}$

S8 and nothing else - same story in ~10 years time?

NEAR-FUTURE WEAK LENSING SURVEYS

Vera C. Rubin Observatory:

The Legacy Survey of Space and Time (LSST)

8.4m M1

18,000 sq deg: WL, GC, 3x2pt

n_eff ≈ 30 galaxies per sq arcmin.

EUCLID

1.2m primary mirror made from silicon carbide.

Two instruments: Visible light camera (VIS) and Near-Infrared camera (NISP).

Image credit: ESA

Launch date: 2023

EUCLID-LIKE FORECAST FOR LCDM

EUCLID-LIKE FORECAST ON HO

EUCLID-LIKE FORECAST ON HO

For 1% H0 from lensing need at least:

- to know ns to current
 (Planck) precision
- assume BBN
- •Use all modes out to lmax=5000

AH 2021

H0 information coming from broadband shape of the power spectrum - many degeneracies!

CONCLUSIONS

- Current lensing surveys alone give good constraint on S8 but weak/no constraint on H0.
- Have shown why current lensing data constrain S8 well and H0 poorly, using analytic arguments based on the halo model.
- Cleanest probe of H0 is the matter-radiation equality scale seen in projection, followed by subtle effects on the shape of the spectrum: partially degenerate with baryon feedback. Looks like Euclid will have a tough job of getting <1% H0 from lensing alone!

arXiv:2104.12880

IF YOU ENJOYED THIS, YOU MAY ALSO LIKE...

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 8 Feb 2022]

The non-Gaussian likelihood of weak lensing power spectra

Alex Hall, Andy Taylor

arXiv:2202.04095

Theory + simulations paper:

- Derive the leading-order correction to the power spectrum likelihood from non-Gaussianity (nonlinearity) in the shear field.
- Provide (first?) rigorous justification for the use of a Gaussian likelihood for power spectra in wide cosmic shear surveys (or 3x2pt).