

Almanac Generic Field Level Inference for Full-Sky Cosmological Fields and Angular Power Spectra

Dr. Arthur Loureiro @ German Centre for Cosmological Lensing (Oskar Klein Centre, Stockholm University & Imperial College London)

The Almanac Team

Dr Arthur Loureiro

Prof. Alan Heavens

Prof. Andrew Jaffe

Dr. Elena Sellentin

Dr. Lorne Whiteway

+ Javier S. Lafaurie

1. Observational Cosmology Where are we, and where are we going?

The Era of Stage III Cosmological Surveys is almost over

Stage III Surveys "It's ΛCDM whether you like it or not..."

Arthur Loureiro @ GCCL - Mar/2023

Stage III Surveys "It's ACDM whether you like it or not..." OR NOT

Wong et al. 2019

Loureiro et al., A&A (2022)

Stage III Surveys OR NOT

Stage IV Surveys are just around the corner!

Eucic

- ~ 2 Billion galaxies for Weak Lensing
- ~ 50 Million galaxies for Galaxy Clustering
- Photometric and **Spectroscopic**
- 15 000 deg²
- Up to redshift of ~ 2
- Launch: 2023

- ~ 20 Billion photometric galaxies
- ~ 10⁵ Supernovae
- Six bands (ugrizy)
- 18 000 deg²
- Up to redshift of ~ 1.2
- First Light: 2023

Eucic

- ~ 2 Billion galaxies for Weak Lensing
- ~ 50 Million galaxies for Galaxy Clustering
- Photometric and **Spectroscopic**
- 15 000 deg²
- Up to redshift of ~ 2
- Launch: 2023

Both will be amazing for Weak Lensing

- ~ 20 Billion photometric galaxies
- ~ 10⁵ Supernovae
- Six bands (ugrizy)
- 18 000 deg²
- Up to redshift of ~ 1.2
- First Light: 2023

×

×

×

00000

Exploring Stage-IV data will require the next generation of data analysis techniques, breaking away from outdated assumptions such as sky-flatness, gaussianity, etc.

1. Weak Lensing A speed-run

Weak Lensing (mandatory slide!)

We can probe the growth of structures in the universe using weak gravitational lensing

$$S_8 = \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{1/2}$$

as well as the distribution of matter along the line-of-sight.

The amplitude of matter density fluctuations

Weak Lensing Theory Speed-run

• The mapping between the lensing source's true angular position and the observed angular position is $\theta_{s,i} \approx A_{ij} \theta_{\mathrm{obs},j}$, with

$$A_{ij} = \delta_{ij} - \partial_i \partial_j \tilde{\Psi}$$

where

$$\tilde{\Psi}(\chi_{s},\hat{n}) = 2 \int_{0}^{\chi_{s}} d\chi \frac{f_{K}(\chi_{s}-\chi)}{f_{K}(\chi)f_{K}(\chi_{s})} \Psi(\chi,\hat{n})$$
Newtonian
Grav. Potential

- From these, we can define the Weak Lensing observables (in harmonic space):
 - Convergence:

$$\kappa_{\ell m} = -\frac{1}{2}\ell(\ell+1)\,\tilde{\Psi}_{\ell m}$$

• Shear:

$$\gamma_{\ell m} = \frac{1}{2} \sqrt{(\ell - 1)\ell(\ell + 1)(\ell + 2)} \,\tilde{\Psi}_{\ell m}$$

• Since shear is a spin-2 field it can be decomposed into *E*- and *B*-modes

$$E_{\ell m} = -\frac{1}{2} \int \mathrm{d}\Omega \left[\gamma(\hat{n})_{+2} Y_{\ell m}^*(\hat{n}) + \gamma^*(\hat{n})_{-2} Y_{\ell m}^*(\hat{n}) \right]$$

and

$$B_{\ell m} = \frac{i}{2} \int d\Omega \left[\gamma(\hat{n})_{+2} Y_{\ell m}^*(\hat{n}) - \gamma^*(\hat{n})_{-2} Y_{\ell m}^*(\hat{n}) \right] \,.$$

· _ · · · ·

Weak Lensing Theory Speed-run

• The mapping between the lensing source's true angular position and the observed angular position is $\theta_{s,i} \approx A_{ij} \theta_{\mathrm{obs},j}$, with

• From these, we can define the Weak Lensing observables (in harmonic space):

• Convergence:

 $1) \tilde{\Psi}_{\ell m}$ $\ell(\ell+1)(\ell+2)\, ilde{\Psi}_{\ell m}$ t can be modes

$$E_{\ell m} = -\frac{1}{2} \int \mathrm{d}\Omega \left[\gamma(\hat{n})_{+2} Y_{\ell m}^*(\hat{n}) + \gamma^*(\hat{n})_{-2} Y_{\ell m}^*(\hat{n}) \right]$$

and

$$B_{\ell m} = \frac{i}{2} \int d\Omega \left[\gamma(\hat{n})_{+2} Y_{\ell m}^*(\hat{n}) - \gamma^*(\hat{n})_{-2} Y_{\ell m}^*(\hat{n}) \right] \,.$$

· _ · · · ·

2. Field Level Inference What is it, and Why do we care?

Galaxy Shapes

Kannawadi et al. 2018

Arthur Loureiro @ GCCL - Mar/2023

Galaxy Shapes

Kannawadi et al. 2018

Arthur Loureiro @ GCCL - Mar/2023

Arthur Loureiro @ GCCL - Mar/2023

Loureiro et al. 2021 (2110.06947)

Galaxy Shapes

Galaxy Shapes

Arthur Loureiro @ GCCL - Mar/2023

Cosmological Parameters

Galaxy Shapes

Porqueres et al. 2021(2108.04825)

----- Best Fit ----- zero line 🕴 PCL E-Mode 🕴 PCL B-Mode

Field Level Inference Compared to other methods

Leclercq & Heavens 2021 (2103.04158)

Arthur Loureiro @ GCCL - Mar/2023

Field Level Inference Compared to other methods

Leclercq & Heavens 2021 (2103.04158)

Arthur Loureiro @ GCCL - Mar/2023

Galaxy Shapes

Porqueres et al. 2021(2108.04825)

----- Best Fit ----- zero line 🕴 PCL E-Mode 🕴 PCL B-Mode

Ideal Bayesian Hierarchical Model For Weak Lensing Analysis

Alsing et al. 2015 (1505.078400)

Arthur Loureiro @ GCCL - Mar/2023

3. Almanac Sampling full sky cosmological fields and their power spectra

Almanac

Spin-0 and Spin-2 Cosmological Fields

An arbitrary spin-s field can be represented in the basis of spin-s spherical harmonics

$$f(\hat{n}) = \sum_{\ell m} f_{\ell m} \, _{s} Y_{\ell m}(\hat{n})$$

With

$$f_{\ell m} = \int d\Omega \ f(\hat{n}) \ {}_{s}Y^*_{\ell m}(\hat{n})$$

And covariance

$$\mathsf{C} \equiv \langle f_{\ell m} f^*_{\ell' m'} \rangle \delta_{\ell \ell'} \delta_{m m'}$$

Figures from Planck Collaboration, SDSS Collaboration & S. Pires et al. 2010

Almanac

Spin-0 and Spin-2 Cosmological Fields

An arbitrary spin-s field can be represented in the basis of spin-s spherical harmonics

$$f(\hat{n}) = \sum_{\ell m} f_{\ell m} \, _{s} Y_{\ell m}(\hat{n})$$

With

$$f_{\ell m} = \int d\Omega \ f(\hat{n}) \ {}_{s}Y^*_{\ell m}(\hat{n})$$

And covariance

$$\mathsf{C} \equiv \langle f_{\ell m} f^*_{\ell' m'} \rangle \delta_{\ell \ell'} \delta_{m m'}$$

Almanac

Spin-0 and Spin-2 Cosmological Fields

An arbitrary spin-s field can be represented in the basis of spin-s spherical harmonics

$$f(\hat{n}) = \sum_{\ell m} f_{\ell m} \, _{s} Y_{\ell m}(\hat{n})$$

With

$$f_{\ell m} = \int d\Omega \ f(\hat{n}) \ {}_{s}Y^*_{\ell m}(\hat{n})$$

And covariance

$$\mathsf{C} \equiv \langle f_{\ell m} f^*_{\ell' m'} \rangle \delta_{\ell \ell'} \delta_{m m'}$$

Figures from Planck Collaboration, SDSS Collaboration & S. Pires et al. 2010

$\mathcal{P}(\mathsf{C}, \boldsymbol{a} | \boldsymbol{d}, \mathsf{N}) \propto \mathcal{L}(\boldsymbol{d} | \boldsymbol{a}, \mathsf{N}) \mathcal{G}(\boldsymbol{a} | \mathsf{C}) \pi(\mathsf{C})$

Arthur Loureiro @ GCCL - Mar/2023

Alsing et al. 2015, Loureiro et al. 2022 (ArXiv:2210.13260), Sellentin, Loureiro et al, in prep

$\mathcal{G}(\boldsymbol{a}|\mathsf{C}) = \frac{1}{\sqrt{|2\pi\mathsf{C}|}} \exp\left(-\frac{1}{2}\boldsymbol{a}^{\mathrm{T}}\mathsf{C}^{-1}\boldsymbol{a}\right) \longleftarrow$

Arthur Loureiro @ GCCL - Mar/2023

$\mathcal{G}(\boldsymbol{a}|\mathsf{C}) = \frac{1}{\sqrt{|2\pi\mathsf{C}|}} \exp\left(-\frac{1}{2}\boldsymbol{a}^{\mathrm{T}}\mathsf{C}^{-1}\boldsymbol{a}\right) \boldsymbol{\leftarrow}$

Arthur Loureiro @ GCCL - Mar/2023

$\mathcal{L}(\boldsymbol{d}|\boldsymbol{a},\mathsf{N})\propto \exp\left[-rac{1}{2}(\boldsymbol{d}-\mathsf{Y}\boldsymbol{a})^{\mathrm{T}}\mathsf{N}^{-1}(\boldsymbol{d}-\mathsf{Y}\boldsymbol{a}) ight]$ agenceform agencefor

Arthur Loureiro @ GCCL - Mar/2023

$\mathcal{P}(\mathsf{C}, \boldsymbol{a} | \boldsymbol{d}, \mathsf{N}) \propto \mathcal{L}(\boldsymbol{d} | \boldsymbol{a}, \mathsf{N}) \mathcal{G}(\boldsymbol{a} | \mathsf{C}) \pi(\mathsf{C})$

$\sim 10^6 - 10^8$ parameters

Arthur Loureiro @ GCCL - Mar/2023

4. Sampling High Dimensional Posteriors **Coordinate Transformations & the Tuned Hamiltonian Monte-Carlo**

Hamiltonian Monte Carlo

Explores the phase space using an analogy with dynamical systems with our parameters being the positions

$$\mathcal{H} = \sum_{i}^{N} rac{p_i^2}{2m_i} + \Psi(\mathbf{a}, \mathbf{C}_\ell)$$

The potential is related to the posterior:

$$\Psi(\mathbf{a}, \mathbf{C}_{\ell}) = -\ln p(\mathbf{a}, \mathbf{C}_{\ell} | \mathbf{d}, \mathbf{N})$$

Evolves as a dynamical system with the momenta marginalized over

• The C matrix needs to be positive definite

- The C matrix needs to be positive definite
- The most straightforward coordinate system to ensure this is using a and G = In(C).

- The C matrix needs to be positive definite
- The most straightforward coordinate system to ensure this is using a and G = In(C).
- However, we fall into the Sting-Ray (Neil's Funnel) posterior problem

- The C matrix needs to be positive definite
- The most straightforward coordinate system to ensure this is using a and G = In(C).
- However, we fall into the Sting-Ray (Neil's Funnel) posterior problem
- Sampler becomes inefficient

The sting-ray problem: SOLVED

Rescaling the fields by their standard deviation

$$\boldsymbol{x} = \mathsf{L}^{-1} \boldsymbol{a}$$

where $C = LL^T$

 Taking the diagonal-log of the Cholesky decomposed covariance

$$K_{\alpha\beta} = \begin{cases} \ln(L_{\alpha\beta}) & \text{if } \alpha = \beta, \\ L_{\alpha\beta} & \text{otherwise.} \end{cases}$$

Coordinate System comparison

Naïve: $G_{\ell} = \log(C_{\ell}) \& a_{\ell m}$

Arthur Loureiro @ GCCL - Mar/2023

Cholesky: $K_{ij} \& x_{\ell m} = L^{-1} a_{\ell m}$

Three phase tuning

Arthur Loureiro @ GCCL - Mar/2023

Three phase tuning

Three phase tuning

Three phase tuning

Tuned HMC Three phase tuning

Normal HMC

Tuned HMC

Sellentin, Loureiro et al. in prep

5. Applications to Weak Lensing Simulated Euclid-like data

Euclid-like case

- Two tomographic bins
- Multipoles: 4, 2048
- Nside = 1024 (12.5M pixels)

 10^{0}

 10^{-2}

 10^{-4}

 10^{-6}

 10^{-8}

 10^{-10}

 10^{-12}

 10^{-14}

 ℓC_ℓ

- 16.8 Million free parameters; ~20k are C_{ℓ}
- Noise:
 - 3 gals/arcmin²/bin
 - $\sigma(e) = 0.28$

Angular Power Spectra

Arthur Loureiro @ GCCL - Mar/2023

Angular Power Spectra

E/B Correlations

Safe to use the point estimates, no E/B leak detected!

r-correlation

r-correlation 0.1 0.0 -0.1

Arthur Loureiro @ GCCL - Mar/2023

Inferred shear maps

Arthur Loureiro @ GCCL - Mar/2023

Reconstructed **Lensing Potential**

-1.6e-05

Arthur Loureiro @ GCCL - Mar/2023

Typical Sample Map from Almanac- Bin 1

1.6e-05 Lensing potential

Typical Sample Map from Almanac - Bin 2

-1.6e-05 1.6e-05 Lensing potential

Map consistency check

6. Convergence Testing All diagnostics we carried out...

Convergence Diagnostics

Arthur Loureiro @ GCCL - Mar/2023

7. Conclusions & Next Steps What we achieved and where are we going from here?

Summary

- Next Gen Surveys require Next Gen Cosmological Analysis
- Field Level Inference is an optimal way to extract cosmological information for upcoming cosmological surveys
- Almanac can recover the full sky posterior of high-resolution maps and angular power spectra ($\max = 2048!$)
- We retain the ability to perform systematic contamination checks: EB "leakage", B-modes, and more
- We can optimally (by construction) infer the largest scales accessible in Euclid/LSST, including their full marginalised posterior
- We can now also infer (aka have an educated guess) mass maps where surveys will not even observe!

- A background paper on our new sampler with applications to CMB simulations is on the way.
 - Applications to Stage III Survey Data
 - Cosmological analysis from point estimates (by Javier Lafaurie)
 - Cosmological analysis using normalising flows
 - Primordial non-gaussianities with Weak Lensing Fields

Thanks! arthur.loureiro@fysik.su.se

Arthur Loureiro @ GCCL - Mar/2023

CMB Temperature Low Signal-to-noise case

- Temperature-only
- Single channel simulation
- Multipole range: 2, 1024
- Nside: 512 (3.14M pixels)
- Noise level: 1e-6 K/pixel
- WMAP-Like Mask

Mean Map from the samples

Sellentin, Loureiro et al. in prep

CMB Polarisation Mid Signal-to-noise

- Polarisation only, no EB-Cross
- Single channel simulation
- Multipole range: 2, 1024
- Nside: 512 (3.14M pixels) \bullet
- Noise level: 2e-6 K / pixel
- WMAP-Like Mask

Sellentin, Loureiro et al. in prep

U

-5.3e-06

5.3e-06

