Can we use three-point statistics to self-calibrate weak lensing systematics?

Susan Pyne with Benjamin Joachimi

arXiv 2010.00614

Motivation for considering 3-point statistics, despite their complexity

Modelling assumptions to make the problem realistic but tractable

Results, based on Fisher matrix analysis and figures of merit

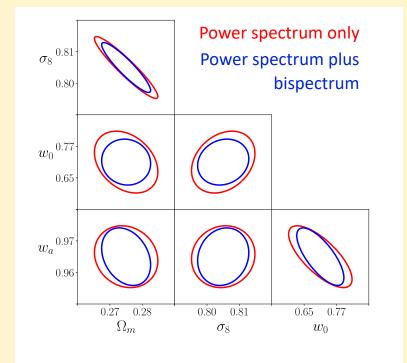
Our conclusion that 3-point statistics can help a lot + brief discussion of further work

It is well-established that combining 2- and 3-point weak lensing statistics reduces statistical errors

Sato and Nishimichi 2013 Kayo and Takada 2013 Coulton et al 2018 Rizzato et al 2018

And 3-point statistics have been measured in practice

Semboloni et al 2010 – Cosmic Evolution Survey Fu et al 2014 - CFHTLens



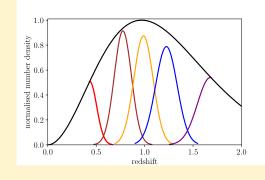
But the real challenge for next-generation weak lensing surveys is systematic uncertainties

2

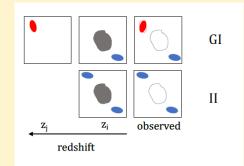
Multiplicative bias

$$\hat{\gamma}^{(i)} = \left(1+m_i
ight)\gamma^{(i)}_{ ext{true}}$$

Redshift uncertainties



Intrinsic alignments



We used Fisher matrix methods and figures of merit to quantify information content ...

Fisher matrix $F_{\alpha\beta} = \frac{\partial \mathbf{D}^{\mathrm{T}}}{\partial p_{\alpha}} \operatorname{Cov}_{\mathrm{D}}^{-1} \frac{\partial \mathbf{D}}{\partial p_{\beta}}$

Figure of merit
$$\operatorname{FoM}_{\alpha\beta} = \frac{1}{\sqrt{\det(\mathbf{F}^{-1})_{\alpha\beta}}}$$

... and made some simplifying modelling choices

- Euclid-like survey but used only 5 tomographic bins (over whole redshift range)
- Bispectrum based only on equilateral triangles
- Only Gaussian and supersample terms of covariance (In-survey non-Gaussian terms are sub-dominant)
- Focus on $\ \Omega_{
 m m} \sigma_8$ and $w_0 w_a$ planes

We assume multiplicative bias in each bin is independent and uncorrelated ...

 $\hat{\gamma}^{(i)} = (1+m_i) \, \gamma^{(i)}_{\mathrm{true}}$

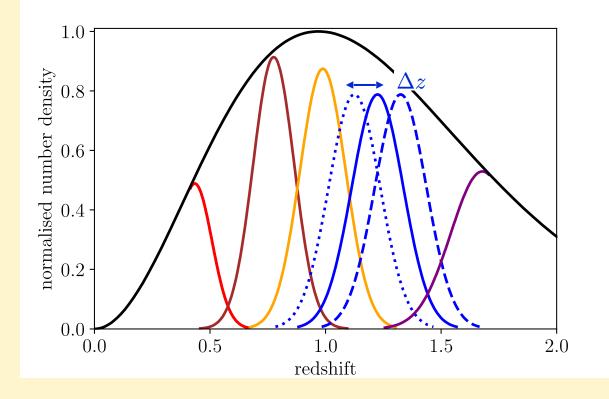
Huterer et al 2006, Massey et al 2012

5 free parameters m_i - one for each tomographic bin

... and wrap up uncertainty in the redshift distribution into a single shift parameter for each bin

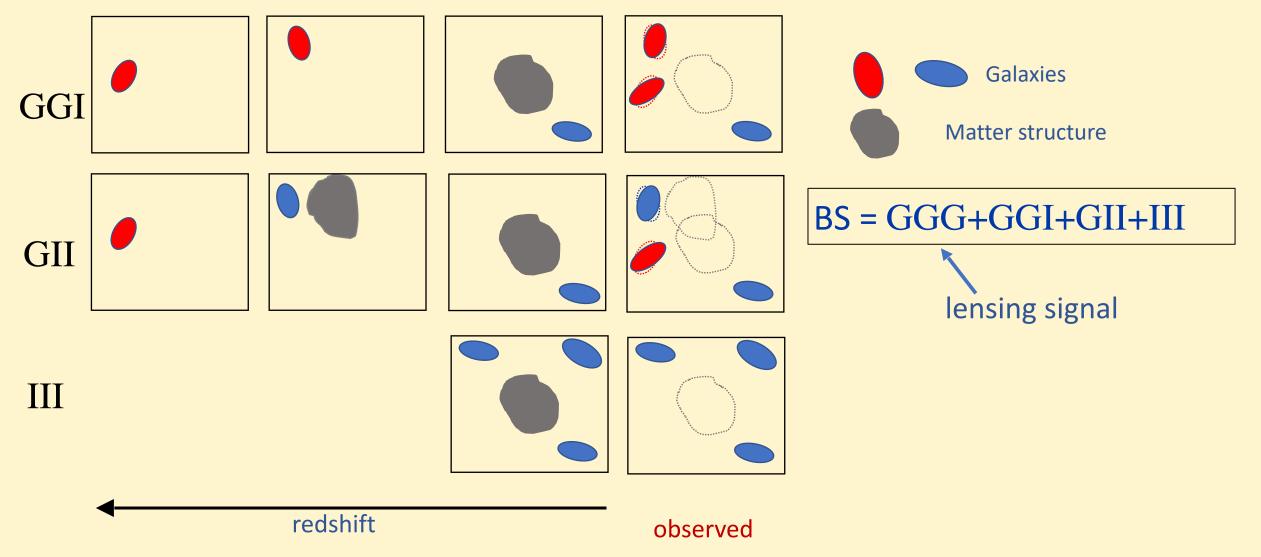
$$p^{(i)}(z) = p^{(i)}_{\mathrm{obs}}(z - \Delta z_i)$$

Again there are 5 free parameters Δz_i



Hikage et al 2019, Hildebrandt et al 2020

Intrinsic alignment bispectra are more complex than power spectra



Based on Troxel & Ishak 2015

We use the nonlinear alignment model

Fourier transform of field which produces IA

$$-\, ilde{\delta}_{
m I}=f_{
m IA} ilde{\delta}_{
m G}$$
 —— matter density contrast

$$f_{\mathrm{IA}} = -\mathbf{A}_{\mathbf{IA}} \frac{C_1 \bar{\rho}}{(1+z)D(z)} \left(\frac{1+z}{1+z_0}\right)^{\eta_{\mathbf{IA}}}$$

2 free parameters – amplitude $A_{\rm IA}$ and redshift dependence $\eta_{\rm IA}$

Hirata & Seljak 2004, Bridle & King 2007

This gives the intrinsic alignment power spectra

 $P_{\delta\delta_{\mathrm{I}}}(k) = f_{\mathrm{IA}} P_{\mathrm{NL}}(k) \qquad P_{\delta_{\mathrm{I}}\delta_{\mathrm{I}}}(k) = f_{\mathrm{IA}}^2 P_{\mathrm{NL}}(k)$

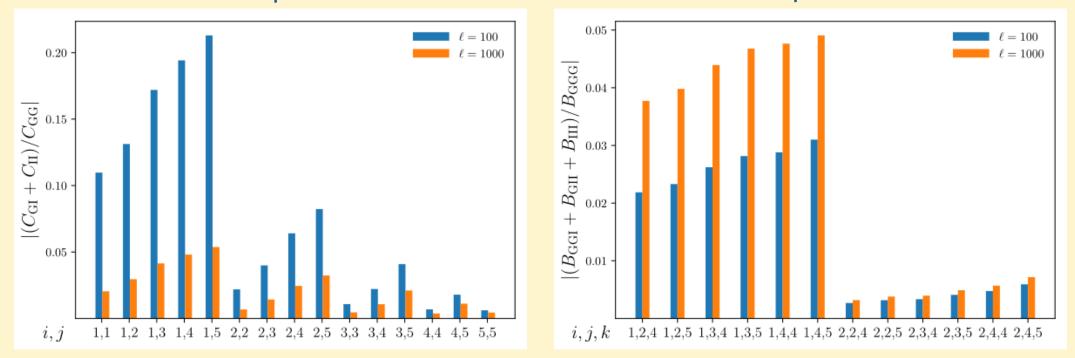
and, using the fitting formula from Gíl-Marin et al 2012:

 $B_{\delta\delta\delta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = 2F_2^{\text{eff}}(\mathbf{k}_1, \mathbf{k}_2)P_{\text{NL}}(k_1)P_{\text{NL}}(k_2) + 2 \text{ perms.}$ the IA bispectra, eg

$$\begin{split} B_{\delta\delta_{\rm I}\delta_{\rm I}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) &= 2 \left[f_{\rm IA}^3 F_2^{\rm eff}(\mathbf{k}_1, \mathbf{k}_2) P_{\rm NL}(k_1) P_{\rm NL}(k_2) \right. \\ &+ f_{\rm IA}^2 F_2^{\rm eff}(\mathbf{k}_2, \mathbf{k}_3) P_{\rm NL}(k_2) P_{\rm NL}(k_3) \\ &+ f_{\rm IA}^3 F_2^{\rm eff}(\mathbf{k}_3, \mathbf{k}_1) P_{\rm NL}(k_3) P_{\rm NL}(k_1) \right] \end{split}$$

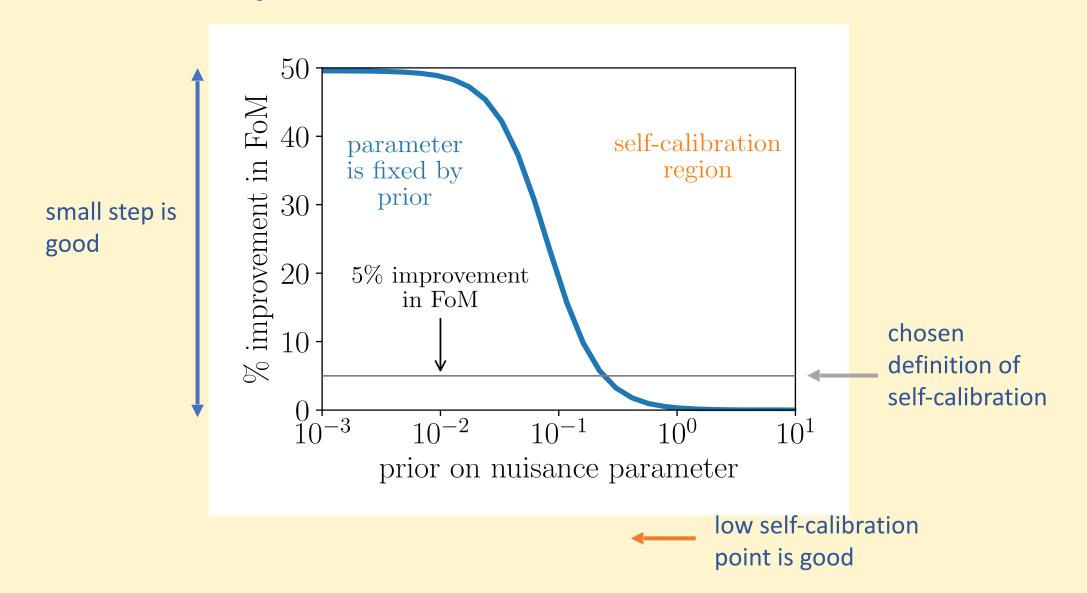
The resulting IA power spectra and bispectra are differently related to the lensing signal

Power spectrum

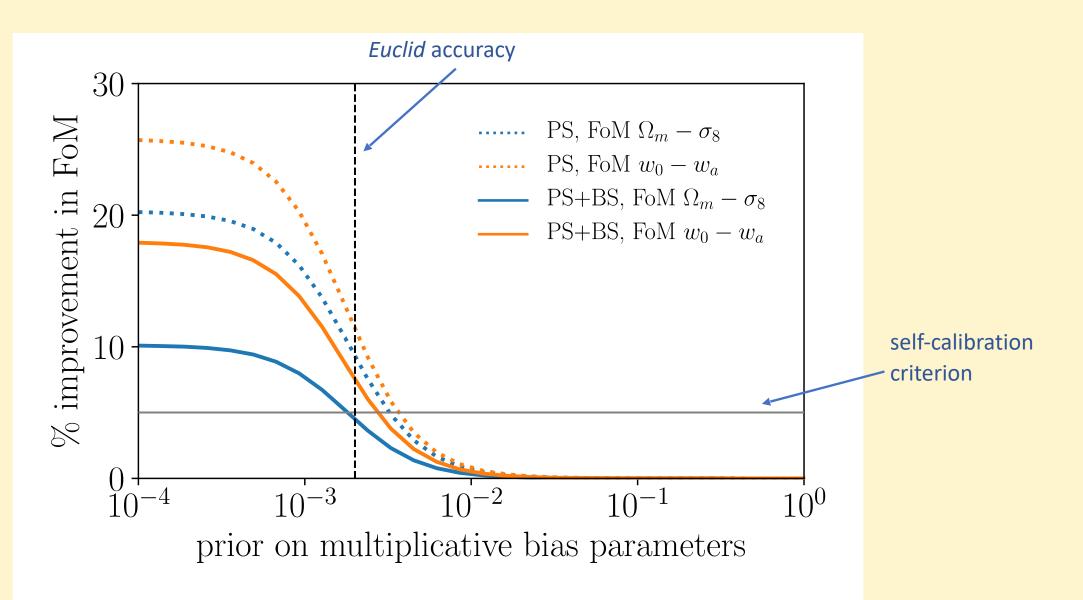


Ratio of total intrinsic alignment signal to lensing signal

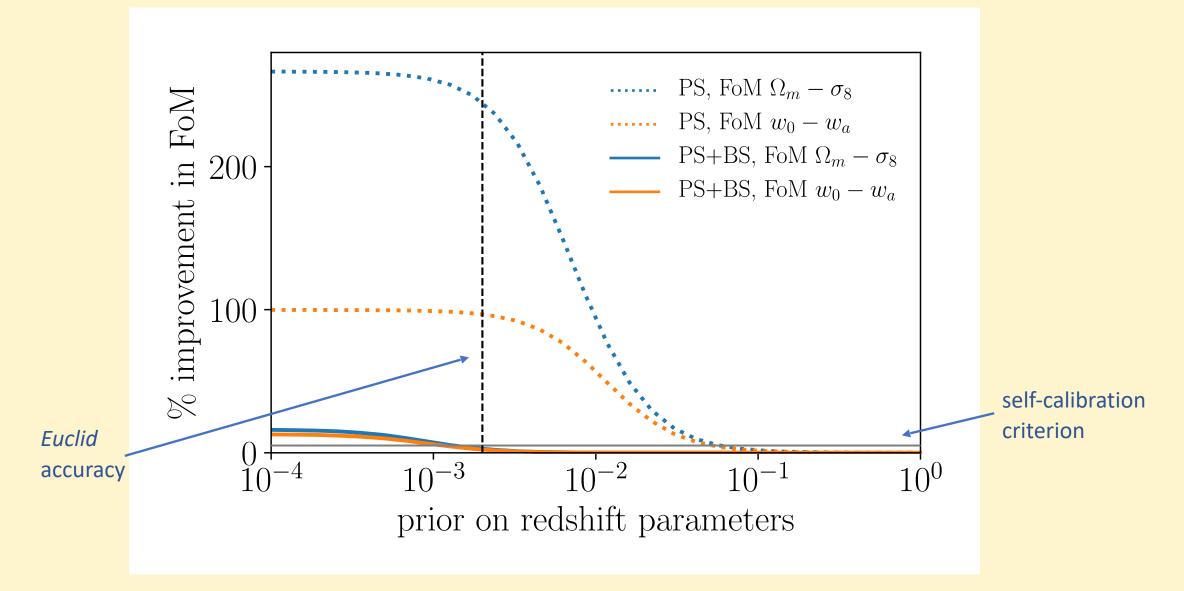
We consider how the FoM varies as we vary the prior on a nuisance parameter



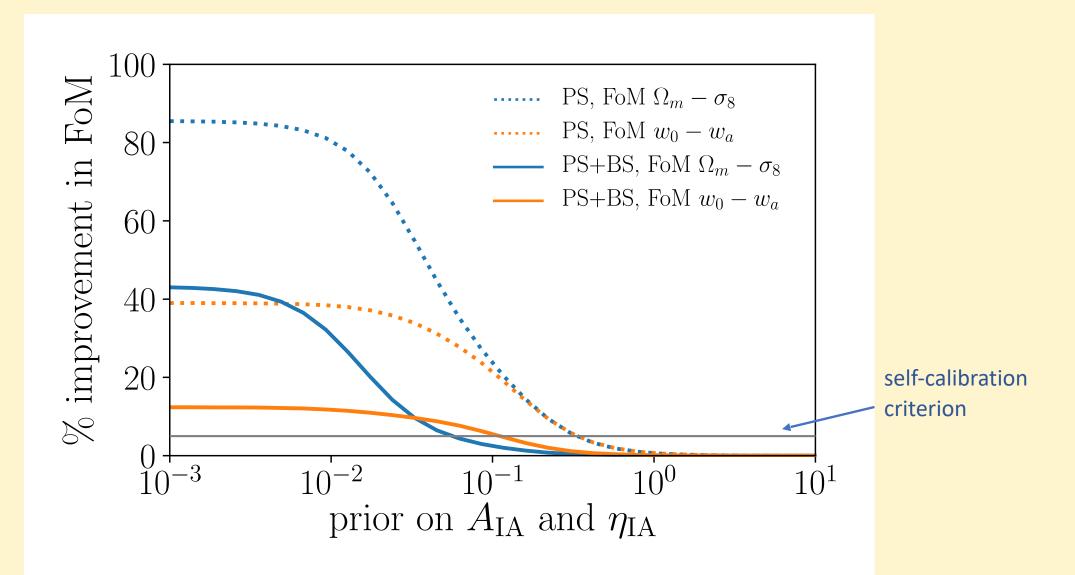
Self-calibration is possible and is improved by bispectrum – multiplicative bias



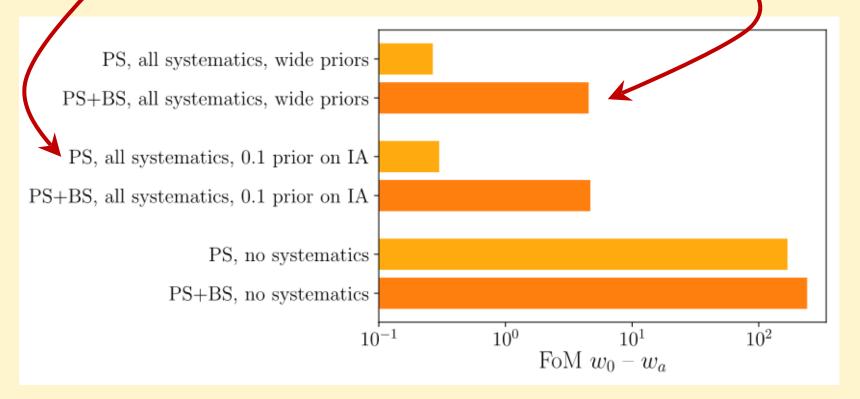
Self-calibration is possible and is improved by bispectrum – redshift uncertainty



Self-calibration is possible and is improved by bispectrum – intrinsic alignments



Another way to look at this: compare PS with tight prior with self-calibration using PS+BS



Example: $w_0 - w_a$ FoM

Further work

- Consider alternative summary statistics which are more useful in practice eg aperture mass
- Confirm the bispectrum intrinsic alignment model measure from simulations
- Investigate improved bispectrum formula Takahashi et al 2020
 better at small scales
- Look into other systematics, especially baryonic effects compare with established power spectrum methods (Mead et al 2021)

Summary

- Systematics are a key challenge for next-generation weak lensing surveys
- Systematics affect the power spectrum and bispectrum differently
- Have shown that using the bispectrum allows self-calibration to mitigate three major systematics
- Hopefully this will lead to a practical alternative method for future surveys