
GLASS
GENERATOR FOR LARGE SCALE STRUCTURE

Nicolas Tessore (UCL)
German Centre for Cosmological Lensing
10 Mar 2023

GLASS
GLASS is a Python library to simulate a past light cone. It randomly

samples the matter field and forward-models everything else, such
as e.g. the weak lensing and galaxy fields. One particular application

is to create catalogues for photometric galaxy surveys.

GLASS
GLASS is a Python library to simulate a past light cone. It randomly

samples the matter field and forward-models everything else, such
as e.g. the weak lensing and galaxy fields. One particular application

is to create catalogues for photometric galaxy surveys.


arXiv:2302.01942


glass-dev/glass


glass.readthedocs.io

https://arxiv.org/abs/2302.01942
https://github.com/glass-dev/glass
https://glass.readthedocs.io/

OUTLINE

Methodology
Problems in current simulations and how we solved
them in GLASS. Useful to anyone doing this kind of
simulation.

Implementation
Specific example of how to use GLASS: Simulating a
galaxy survey.

METHODOLOGY

SPHERICAL SIMULATIONS
Simulate cosmic fields as observed on the sphere

High angular resolution, low radial resolution
(matches photometric galaxy surveys)

ANGULAR DISCRETISATION
Angular statistics for Stage 4 survey:

 angular resolution

At the same time: coherent full sky simulations

ℓ ​ ≈max 5000
≈ 2 arcmin

≈ 2 Mpc (z = 1), ≈ 0.25 Mpc (z = 0.1)

≈ 7 Gpc (z = 1), ≈ 0.85 Gpc (z = 0.1)

RADIAL DISCRETISATION
Two approaches to split the simulation in the radial direction

(Xavier et al. 2016)

EFFECTIVE FIELDS
Generate the effective random field for each observable,

e.g. angular clustering and cosmic shear in all tomographic bins

(DES Y1, image credit arXiv:1810.02499)

Must prescribe distributions of all fields and two-point statistics of all field combinations!

FORWARD MODELLING
Discretise the entire past light cone into projected matter fields

Observables are forward-modelled from initial matter simulation,
which does not depend on or even know about eventual data

This is how GLASS works

PROBLEM: NUMBER OF SHELLS
Some observables (e.g. galaxies and weak lensing) need to compute

integrals over the matter fields

These integrals must be approximated using the discretised matter
shells

For per cent-level accuracy in clustering and cosmic shear, we need
shells of comoving

S = δ(z) dz∫

S ≈ ​w ​ δ ​

i

∑ i i

≈ 150 Mpc

To build a light cone up to :
 shells

memory requirements:

40 HEALPix maps memory

NSIDE = 4096 @ 1.5G 60G

NSIDE = 8192 @ 6G 240G

z = 3
6.5 Gpc/150 Mpc ≈ 40

HINT 1

Multivariate Gaussian random variables can be sampled iteratively

Add one more Gaussian random variable to existing ones:

Sample new Gaussian variate independently from the conditional
distribution:

n

Σ ​ =n+1 ​ ​(
Σ ​n

c ​n
T

c ​n

σ ​n+1
2)

​ ​

​ ​μ~n+1

​σ~n+1
2

= μ ​ + c ​Σ ​(x ​ − μ ​)n+1 n
T

n
−1

n n

= σ ​ − c ​Σ ​c ​n+1
2

n
T

n
−1

n

HINT 2

Matter is not correlated much beyond a few hundred Mpc

 is the correlation coefficient for shells and R ​ =l
ij

​

​C ​ C ​

l
ii

l
jj

C ​

l

ij

i j

SOLUTION

We can sample each new Gaussian random field iteratively from the
conditional distribution of earlier shells

(imprints all cross-correlations between shells)

After a few iterations, we can forget about past shells
(constant memory use, no matter how many shells there are in total)

We transform the Gaussian random fields to a more suitable
distribution, e.g. lognormal

PROBLEM: ACCURATE LOGNORMAL TRANSFORMS
Lognormal transformation:

Need to simulate Gaussian random field so that the statistics of
observed lognormal field come out right

Y = exp(X) − 1

X

Y

TWO-POINT STATISTICS IN REAL SPACE

Angular correlation function relation for lognormal transformation:

A pointwise transform in real space always results in a
simple relation for the correlation function

Unfortunately, neither theory nor simulation operate in real space

​ ​

C(θ)

G(θ)

= exp{G(θ)} − 1

= ln{1 + C(θ)}

Y = f(X)
C(θ) = C(G(θ))

TWO-POINT STATISTICS IN HARMONIC SPACE

Transformation is non-local in harmonic space and mixes all scales

Band-limited lognormal spectra cannot be obtained from
band-limited Gaussian spectra, and vice versa
Theory always gives us band-limited lognormal spectra
Simulation always requires band-limited Gaussian spectra

PROBLEM

Given a band-limited lognormal spectrum, it is generally impossible
to construct an exact band-limited Gaussian spectrum

Necessary approximations to make it work are either not accurate
enough or require going to much higher resolution

In short: does not work!C ​ →l G ​l

SOLUTION

The true angular matter power spectrum is not band-limited; it is
only our theory that stops at some point

The band-limited Gaussian spectrum that we require for simulation
does not produce a band-limited lognormal field — so what?!

Solve for the Gaussian spectrum that reproduces the known modes
of the lognormal spectrum:

For GLASS, we wrote a simple Gauss–Newton solver; it converges in a
few steps but there is lots of room for improvement

G ​ →l C ​l

PROBLEM: ITERATIVE LENSING
Convergence at redshift requires all matter at lower redshift:

Naive approximation by discrete sum would require us to
keep all shells at lower redshift in memory:

z

κ(z) = ​ ​δ(z) ​ ​ dz2
3Ω ​m ∫

0

z
′

x ​(z)M

x ​(z) x ​(z ,z)M
′

M
′

E(z)′
1+z′ ′

κ ​ ≈i ​w ​δ ​

j≤i

∑ ij j

SOLUTION

Apply the iterative lensing technique from
multi-plane strong lensing

We only need to keep two convergence maps in memory to
compute weak lensing iteratively

κ ​ =i … κ ​ +i−1 … κ ​ +i−2 … δ ​i−1

RESULTS

Better than per cent-level accuracy is achievable!

BONUS PROBLEM: ACCURATE THEORY (UNSOLVED)
We need faster and more accurate angular power spectrum codes

Anecdotally, we spent many times more time and effort in getting
theory to the level of simulations than vice versa

Inaccurate theory leads to inconsistencies in the results, e.g. matter
looks accurate, lensing looks accurate, but galaxies look off

CHALLENGE

C ​ =l
tot

​ C ​

i,j

∑ l
ij

IMPLEMENTATION

GETTING STARTED
Installation:

For spectra from CAMB — but easy to use your own:

Then jump right in with the examples:

$ pip install glass

$ pip install glass-camb

glass.readthedocs.io/projects/examples/

http://glass.readthedocs.io/projects/examples/

A FIRST SIMULATION
Simulate the matter fields up to redshift 1 in 10 shells

A FIRST SIMULATION
make a redshift grid with 10 shells up to redshift 1

zb = glass.shells.redshift_grid(0., 1., num=10.)

make tophat windows for shells

ws = glass.shells.tophat_windows(zb)

1

2

3

4

5

 6

compute or load the angular power spectra for the shells7

cls = ...8

 9

compute Gaussian cls for lognormal fields for 3 correlated shells10

gls = glass.fields.lognormal_gls(cls, nside=nside, lmax=lmax, ncorr=3)11

 12

generator for lognormal matter fields13

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)14

 15

simulate each matter shell16

for i, delta_i in enumerate(matter):17

 18

 # work with each matter field delta_i19

 ...20

compute or load the angular power spectra for the shells

cls = ...

make a redshift grid with 10 shells up to redshift 11

zb = glass.shells.redshift_grid(0., 1., num=10.)2

 3

make tophat windows for shells4

ws = glass.shells.tophat_windows(zb)5

 6

7

8

 9

compute Gaussian cls for lognormal fields for 3 correlated shells10

gls = glass.fields.lognormal_gls(cls, nside=nside, lmax=lmax, ncorr=3)11

 12

generator for lognormal matter fields13

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)14

 15

simulate each matter shell16

for i, delta_i in enumerate(matter):17

 18

 # work with each matter field delta_i19

 ...20

compute Gaussian cls for lognormal fields for 3 correlated shells

gls = glass.fields.lognormal_gls(cls, nside=nside, lmax=lmax, ncorr=3)

make a redshift grid with 10 shells up to redshift 11

zb = glass.shells.redshift_grid(0., 1., num=10.)2

 3

make tophat windows for shells4

ws = glass.shells.tophat_windows(zb)5

 6

compute or load the angular power spectra for the shells7

cls = ...8

 9

10

11

 12

generator for lognormal matter fields13

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)14

 15

simulate each matter shell16

for i, delta_i in enumerate(matter):17

 18

 # work with each matter field delta_i19

 ...20

generator for lognormal matter fields

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)

simulate each matter shell

for i, delta_i in enumerate(matter):

 # work with each matter field delta_i

make a redshift grid with 10 shells up to redshift 11

zb = glass.shells.redshift_grid(0., 1., num=10.)2

 3

make tophat windows for shells4

ws = glass.shells.tophat_windows(zb)5

 6

compute or load the angular power spectra for the shells7

cls = ...8

 9

compute Gaussian cls for lognormal fields for 3 correlated shells10

gls = glass.fields.lognormal_gls(cls, nside=nside, lmax=lmax, ncorr=3)11

 12

13

14

15

16

17

18

19

 ...20

make a redshift grid with 10 shells up to redshift 1

zb = glass.shells.redshift_grid(0., 1., num=10.)

make tophat windows for shells

ws = glass.shells.tophat_windows(zb)

compute or load the angular power spectra for the shells

cls = ...

compute Gaussian cls for lognormal fields for 3 correlated shells

gls = glass.fields.lognormal_gls(cls, nside=nside, lmax=lmax, ncorr=3)

generator for lognormal matter fields

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)

simulate each matter shell

for i, delta_i in enumerate(matter):

 # work with each matter field delta_i

 ...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ADD LENSING

ADD LENSING

this will compute the convergence field iteratively

convergence = glass.lensing.MultiPlaneConvergence(cosmo)

generator for lognormal matter fields13

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)14

 15

16

17

 18

simulate each matter shell19

for i, delta_i in enumerate(matter):20

 21

 # add lensing plane from the window function of this shell22

 convergence.add_window(delta_i, ws[i])23

 24

 # get convergence field25

 kappa_i = convergence.kappa26

 27

 # compute shear field28

 gamm1_i, gamm2_i = glass.lensing.shear_from_convergence(kappa_i)29

 30

 ...31

 # add lensing plane from the window function of this shell

 convergence.add_window(delta_i, ws[i])

 # get convergence field

 kappa_i = convergence.kappa

 # compute shear field

 gamm1_i, gamm2_i = glass.lensing.shear_from_convergence(kappa_i)

generator for lognormal matter fields13

matter = glass.fields.generate_lognormal(gls, nside, ncorr=3)14

 15

this will compute the convergence field iteratively16

convergence = glass.lensing.MultiPlaneConvergence(cosmo)17

 18

simulate each matter shell19

for i, delta_i in enumerate(matter):20

 21

22

23

24

25

26

27

28

29

 30

 ...31

ADD GALAXIES

ADD GALAXIES
standard deviation in each component of galaxy ellipticity

sigma_e = 0.256

use a fixed galaxy bias parameter here

galaxy_bias = 1.8

galaxy number density per arcmin2, over all shells

n_arcmin2 = 0.1

Smail redshift distribution with the given density

z = np.arange(0., 2., 0.01)

dndz = glass.observations.smail_nz(z, 1.0, 2.0, 1.5, norm=n_arcmin2)

ADD GALAXIES

 # true galaxy redshift distribution in this shell

 z_i, dndz_i = glass.shells.restrict(z, dndz, ws[i])

 # galaxy density in this shell

 ngal = np.trapz(dndz_i, z_i)

simulate each matter shell1

for i, delta_i in enumerate(matter):2

 ...3

 4

5

6

7

8

9

 10

 # generate galaxy positions from biased matter field11

 gal_lon, gal_lat = positions_from_delta(ngal, delta_i, galaxy_bias)12

 13

 # generate galaxy ellipticities from the chosen distribution14

 gal_eps = glass.shapes.ellipticity_intnorm(len(gal_lon), sigma_e)15

 16

 # apply the shear fields to the ellipticities17

 gal_she = glass.galaxies.galaxy_shear(gal_lon, gal_lat, gal_eps,18

 kappa_i, gamm1_i, gamm2_i)19

 # generate galaxy positions from biased matter field

 gal_lon, gal_lat = positions_from_delta(ngal, delta_i, galaxy_bias)

simulate each matter shell1

for i, delta_i in enumerate(matter):2

 ...3

 4

 # true galaxy redshift distribution in this shell5

 z_i, dndz_i = glass.shells.restrict(z, dndz, ws[i])6

 7

 # galaxy density in this shell8

 ngal = np.trapz(dndz_i, z_i)9

 10

11

12

 13

 # generate galaxy ellipticities from the chosen distribution14

 gal_eps = glass.shapes.ellipticity_intnorm(len(gal_lon), sigma_e)15

 16

 # apply the shear fields to the ellipticities17

 gal_she = glass.galaxies.galaxy_shear(gal_lon, gal_lat, gal_eps,18

 kappa_i, gamm1_i, gamm2_i)19

 # generate galaxy ellipticities from the chosen distribution

 gal_eps = glass.shapes.ellipticity_intnorm(len(gal_lon), sigma_e)

simulate each matter shell1

for i, delta_i in enumerate(matter):2

 ...3

 4

 # true galaxy redshift distribution in this shell5

 z_i, dndz_i = glass.shells.restrict(z, dndz, ws[i])6

 7

 # galaxy density in this shell8

 ngal = np.trapz(dndz_i, z_i)9

 10

 # generate galaxy positions from biased matter field11

 gal_lon, gal_lat = positions_from_delta(ngal, delta_i, galaxy_bias)12

 13

14

15

 16

 # apply the shear fields to the ellipticities17

 gal_she = glass.galaxies.galaxy_shear(gal_lon, gal_lat, gal_eps,18

 kappa_i, gamm1_i, gamm2_i)19

 # apply the shear fields to the ellipticities

 gal_she = glass.galaxies.galaxy_shear(gal_lon, gal_lat, gal_eps,

 kappa_i, gamm1_i, gamm2_i)

simulate each matter shell1

for i, delta_i in enumerate(matter):2

 ...3

 4

 # true galaxy redshift distribution in this shell5

 z_i, dndz_i = glass.shells.restrict(z, dndz, ws[i])6

 7

 # galaxy density in this shell8

 ngal = np.trapz(dndz_i, z_i)9

 10

 # generate galaxy positions from biased matter field11

 gal_lon, gal_lat = positions_from_delta(ngal, delta_i, galaxy_bias)12

 13

 # generate galaxy ellipticities from the chosen distribution14

 gal_eps = glass.shapes.ellipticity_intnorm(len(gal_lon), sigma_e)15

 16

17

18

19

simulate each matter shell

for i, delta_i in enumerate(matter):

 ...

 # true galaxy redshift distribution in this shell

 z_i, dndz_i = glass.shells.restrict(z, dndz, ws[i])

 # galaxy density in this shell

 ngal = np.trapz(dndz_i, z_i)

 # generate galaxy positions from biased matter field

 gal_lon, gal_lat = positions_from_delta(ngal, delta_i, galaxy_bias)

 # generate galaxy ellipticities from the chosen distribution

 gal_eps = glass.shapes.ellipticity_intnorm(len(gal_lon), sigma_e)

 # apply the shear fields to the ellipticities

 gal_she = glass.galaxies.galaxy_shear(gal_lon, gal_lat, gal_eps,

 kappa_i, gamm1_i, gamm2_i)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

SEE EXAMPLES FOR MORE!

EXTENDING GLASS
Ad hoc — just use your own code!

Extensions — there is first class support for extensions, which are on
equal footing to the core library

We decided to have an open architecture where extensions are
independent projects by independent people

If you want to create an extension: clone the template repository
and go — it's all yours

But do consider to get in touch for coordination and help!

A FEW ONGOING DEVELOPMENTS
Window functions for better accuracy with fewer shells
Is constrained simulation of 3D clustering possible?
Galaxies via halos (MSci project, Lea Harscouet, UCL)
Accelerated and differentiable GLASS

CONCLUSIONS

GLASS …
uses novel techniques to achieve better than per cent-level accuracy
for simulated photometric galaxy surveys

is easy to use in your projects, both new and existing

is easy to extend and interface with your own code

has a lot of room for growth

