Covariance matrices for galaxy cluster weak lensing

published in *MNRAS* (arXiv:1907.06611) Heidi Wu The Ohio State University

What causes cosmic acceleration?

We need measurements other than the expansion rate.

Dark energy slows down the growth of large-scale structure

Sims: Jenkins et al. (1998)

Counting the density peaks as a function of time can help us constrain dark energy parameters.

Galaxy clusters: the highest density peaks

2%

10%

Mass ~ 10¹⁴ to 10¹⁵ M_☉ Size ~ a few million parsecs (Mpc) Richness ~ number of galaxies in a cluster

Measuring dark energy using the number counts of galaxy clusters

We need to infer cluster mass from observable properties.

Impact of scatter

Example from SDSS

DES results will be published in a few weeks! Bands: observation. Points: best-fitting model Mean mass comes from stacked lensing.

Inferring cluster mass from weak lensing

Distance to cluster center

Lensing signal: tangential shear (γ_t) \propto excess surface mass density ($\Delta\Sigma$)

Stacking the weak lensing effect

Combining the weak lensing signal of clusters of similar "richness" (# of galaxies)

Stacking the weak lensing effect

Combining the weak lensing signal of clusters of similar "richness" (# of galaxies)

Stacking the weak lensing effect

Projected Distance [Mpc/h]

How do we calculate the error bars if we stack all clusters in our survey?

Ideally, we simulate many realizations of our survey (number of realizations >> number of data points) and calculate the covariance among realizations. It's incorrect to use halo-to-halo covariance.

Simulations vs. Analytical Calculations

- Analytical calculations: inaccurate at medium/small scales
- Ray-tracing sims: limited to > 1 Mpc, expensive to run
- We combine high-resolution N-body sims with analytical calculations, cross-checking with ray-tracing sims.

Three major components of cluster lensing covariance matrices

- 1. Shape noise $(~1/N_{gal})$
- 2. Large-scale structure (analytical calculations)
- Intrinsic variation of halo density profile (small-scale, N-body sims)

Shape noise due to intrinsic galaxy ellipticities

Noise from Large-Scale Structure

- It dominates large-scale lensing error (where cluster signal is low and shape noise is also low).
- It can be calculated analytically assuming Gaussian random field.

Noise from Intrinsic Variation of Halo Density Profiles

 Halos have diverse projected density profiles due to different concentration, triaxial shape, substructure, etc.

Combining N-body simulations and analytical calculations

Analytical part: Gaussian random fields

Noise of Noise of cross term cluster counts shear (cluster profile)

$$Cov[\gamma_t^h(\theta), \gamma_t^h(\theta')] = \frac{1}{4\pi f_{sky}} \int \frac{\ell d\ell}{2\pi} J_2(\ell\theta) J_2(\ell\theta') \begin{bmatrix} C_\ell^h + \frac{1}{\bar{n}_L} & C_\ell^h + \frac{\sigma_\gamma^2}{\bar{n}_S} \\ C_\ell^h + \frac{\sigma_\gamma^2}{\bar{n}_S} & C_\ell^h + C_\ell^h \\ C_\ell^h + \frac{\sigma_\gamma^2}{\bar{n}_S} & C_\ell^h \\ C_\ell^h + \frac{\sigma_\gamma^2}{\bar{n}_S$$

19

Wu et al. (1907.06611)

Importance of shape noise vs. density fluctuations

Fractional error is independent of redshift and weakly depends on mass

Diagonal vs. off-diagonal elements

Off-diagonal elements decrease rapidly, especially at largescales. Wu et al. (1907.06611)

Importance of diagonal elements

Importance of diagonal elements

Wu et al. (1907.06611)

Cross-mass bin covariance

In the absence of shape noise, the cross-mass covariance is negligible. Wu et al. (1907.06611)

Can we do cluster cosmology using only correlation functions (without number counts)?

Cosmology with Stacked Cluster Weak Lensing and Cluster-Galaxy Cross-Correlations

Andrés N. Salcedo^{1*}, Benjamin D. Wibking¹, David H. Weinberg¹, Hao-Yi Wu¹, Lehman Garrison², Douglas Ferrer², Jeremy Tinker³, Daniel Eisenstein², and Philip Pinto⁴

¹ Department of Astronomy and Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA ² Harvard-Smithsonian Center for Astropyhsics, 60 Garden St., MS-10, Cambridge, MA 02138

- ³ Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003
- ⁴ Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85121

Correlations between clusters, galaxies, and dark matter

Cluster lensing

Cluster galaxy cross correlation

Galaxy auto correlation

 $\Delta\Sigma \propto b_c \sigma_8^2$, $w_{p,cq} \propto b_c b_q \sigma_8^2$, $w_{p,gg} \propto b_a^2 \sigma_8^2,$

3 unknowns, 3 observables

Constraining nuisance parameters

Cluster lensing

observable-mass relation

Cluster galaxy cross correlation

both

Galaxy auto correlation

galaxy-halo connection

Summary

- The number vs. mass of galaxy clusters is a sensitive probe of growth of structure and cosmic acceleration.
- Current surveys like DES are limited by shape noise. For future surveys like LSST and WFIRST, the noise will be dominated by large-scale structure and halo profile variance. We combine simulations and analytical calculations to achieve the required precision.
- Cross-correlation functions of clusters, galaxies, and lensing provide a promising method for constraining scatter and cosmology simultaneously.