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What causes cosmic acceleration?

Is it dark energy?
AIK)/ Nﬁ
General relativity Is it a cosmological constant?
needs extension!
V yes
[s it dynamic dark energy? Why is it so small?
What is it? What is the time evolution?

We need measurements other than the expansion rate.
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Dark energy slows down the growth of
large-scale structure

a=1/4 a=1/2 a=1 (today)

30% dark matter; :

70% dark energy [ % slower evolution

100% dark matter S5 faster evolution

Sims: Jenkins et al. (1998)

Counting the density peaks as a function of time can help
us constrain dark energy parameters.
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Galaxy clusters: the highest density peaks

Galaxies ‘ Hot gas Dark matter halo

2% 10%
Mass ~ 1014 to 101> Mo

Size ~ a few million parsecs (Mpc)
Richness ~ number of galaxies in a cluster
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Measuring dark energy using the number
counts of galaxy clusters
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We need to infer cluster mass from observable properties.



Impact of scatter

Scatter between mass
and observable
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Number of clusters
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Example from SDSS

DES results will be published in a few weeks!

Bands: observation. Points: best-fitting model

Mean mass comes from stacked lensing.
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Costanzi et al. (2019)



Inferring cluster mass from weak lensing

Unlensed

Lensed

Lensing signal

(Shear)

More massive

LLess massive

Distance to cluster center

Lensing signal: tangential shear (V)

o< excess surface mass density (AX)



Stacking the weak lensing effect
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Combining the weak

Richness (# of galaxies)

-
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lensing signal of clusters
of similar “richness” (#
of galaxies)




Stacking the weak lensmg effect
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Combining the weak

Richness (# of galaxies)
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Stacking the weak lensing effect
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from the stacked lensing Projected Distance [Mpc/h]
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How do we calculate the error bars if we
stack all clusters in our survey?

0.508 <7, <0.574, 1.218 <z, < 1.318
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Ideally, we simulate many realizations of our survey (number of
realizations >> number of data points) and calculate the covariance among

realizations. It's incorrect to use halo-to-halo covariance.
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mean[AX] [hM.. /pc?|

Simulations vs. Analytical Calculations
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e Analytical calculations: inaccurate at medium /small scales

e Ray-tracing sims: limited to > 1 Mpc, expensive to run

e We combine high-resolution N-body sims with analytical
calculations, cross-checking vlgith ray-tracing sims.



Three major components of cluster lensing
covariance matrices

1. Shape noise (~1/Nga)

2. Large-scale structure (analytical calculations)

3. Intrinsic variation of halo density profile
(small-scale, N-body sims)
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Shape noise due to intrinsic galaxy ellipticities
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Noise from Large-Scale Structure

e [t dominates large-scale lensing error (where cluster
signal is low and shape noise is also low).

e [t can be calculated analytically assuming Gaussian
random field.

Figure from Millennium Simulation 16



Noise from Intrinsic Variation of Halo
Density Profiles

102} Abacus simulations -
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Combining N-body simulations and analytical

N-body sims:
accurate at small "

scales

calculations
Combining N—body Analytical
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= Wu et al. (1907.06611)



Analytical part: Gaussian random fields

Cross term
(cluster profile;

1 [ ede ' 1 % 2
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clustering cluster shot shape noise

of clusters noise

= Wu et al. (1907.06611)



Importance of shape noise vs.
density fluctuations
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Fractional error is independent of
redshift and weakly depends on mass
—— 10 <M <2 x 10" [Mg /h]
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Diagonal vs. off-diagonal elements
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Off-diagonal elements decrease rapidly, especially at large-

scales.
= Wu et al. (1907.06611)



Importance of diagonal elements
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Importance of diagonal elements
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Underestimation of error bar
(for a lensing amplitude para.)



Cross-mass bin covariance
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In the absence of shape noise, the cross-mass covariance is

neg112§1ble. Wu et al. (1907.06611)



Can we do cluster cosmology
using only correlation functions
(without number counts)?

Cosmology with Stacked Cluster Weak Lensing and
Cluster-Galaxy Cross-Correlations

Andrés N. Salcedo'™, Benjamin D. Wibking!, David H. Weinberg!, Hao-Yi Wu!,
Lehman Garrison?, Douglas Ferrer?, Jeremy Tinker®, Daniel Eisenstein?,
and Philip Pinto?
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Correlations between clusters, galaxies, and
dark matter

Cluster lensing AZ X bc O g ]

2
wP,Cg O( bcbgO-S’

2 2
vy wp g X bgOg,

auto correlation

Cluster galaxy
cross correlation

3 unknowns, 3 observables
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Constraining nuisance parameters

Cluster lensing

Cluster galaxy
cross correlation

Galaxy
auto correlation

observable-mass relation

both

galaxy-halo connection
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Summary

e The number vs. mass of galaxy

clusters is a sensitive

probe of growth of structure and cosmic acceleration.

e Current surveys like DES are limited by shape noise.
For future surveys like LSST and WFIRST, the noise will
be dominated by large-scale structure and halo profile

variance. We combine simulations and analytical

calculations to achieve the required precision.

e Cross-correlation functions of ¢

usters, galaxies, and

lensing provide a promising me:

hod for constraining

scatter and cosmology simultaneously.
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