MEASURING THE GROWTH RATE USING SMALL-SCALE CLUSTERING IN EBOSS

MICHAEL CHAPMAN GCCL SEMINAR 2021-07-30

INTRODUCTION

WHAT DO YOU MEAN "SMALL-SCALE"?

+ WATERLOO CENTRE FOR + ASTROPHYSICS

THE GROWTH RATE

- Theories of dark energy or modified gravity affect the growth of structure, parameterized by *f*σ₈
- f is the logarithmic growth rate of density fluctuations

$$f(\Omega_m) = \frac{dlnD}{dlna}$$
; $D \propto \delta_+$

• σ_8 is the rms variance of density fluctuations in a sphere of radius 8 $h^{-1}Mpc$

Constraints on the growth rate from various galaxy redshift surveys. Planck TT,TE,EE+lowE+lensing shown in black with 68% and 95% confidence ranges. (Planck Collaboration et al. 2018)

REDSHIFT SPACE DISTORTIONS

Peculiar velocities shift the position of galaxies in redshift space:

 $\nabla \cdot \mathbf{v}_p = - a H f \delta_m$

$$\delta_g^s(\mathbf{k}) = (b + f\mu^2)\delta_m^r(\mathbf{k})$$

- In the linear regime (>40 h^{-1} Mpc) gives a direct constraint on $f\sigma_8$
- Below ~40 h⁻¹Mpc need to model non-linearities using N-body simulations

2D correlation function in separation parallel (yaxis) and perpendicular (x-axis) to the line of sight. (Reid et al. 2014, 1404.3742)

EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY (EBOSS)

- Spectroscopic surveys convert redshifts to distances assuming the Hubble flow
- The Baryon Oscillation Spectroscopic Survey (BOSS) observed 1.5 million Luminous Red Galaxies (LRG) in the redshift range (0.1<z<0.7)</p>
- The extended BOSS (eBOSS) observed an additional 300 000 high redshift (0.6<z<1.0) LRGs, as well as ELG and QSO

CORRELATION FUNCTION

Excess probability of finding another galaxy at a given separation relative to if they followed a Poissonian distribution

$$\xi(r_{\parallel}, r_{\perp}) = \frac{DD(r_{\parallel}, r_{\perp}) - 2DR(r_{\parallel}, r_{\perp})}{RR(r_{\parallel}, r_{\perp})} + 1$$

$$w_{p}(r_{\perp}) = 2 \int_{0}^{r_{\parallel,max}} dr_{\parallel}\xi(r_{\parallel}, r_{\perp})$$

$$\xi_{l}(s) = \frac{2l+1}{2} \int d\mu_{s}\xi(s, \mu_{s})L_{l}(\mu_{s})$$

$$w_{p}(r_{\perp}) = 2 \int_{0}^{r_{\parallel,max}} dr_{\parallel}\xi(s, \mu_{s})L_{l}(\mu_{s})$$

Correlation function monopole of the combined BOSS CMASS + eBOSS DR14 (Bautista et al. 2017)

+ WATERLOO CENTRE FOR + ASTROPHYSICS

FIBRE-COLLISION

- Physical size of fibre prevents targeting two objects within 62"
- Separation on the sky is correlated with radial separation, leading to a biased sample
- Commonly corrected using nearest-neighbour weights, which approximately correct issue but perform worse on smaller scales

Result of fibre assignment, Ross et al. 2012

REID ET AL. 2014 (1404.3742)

A 2.5% measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies

Beth A. Reid^{1,2,3*}, Hee-Jong Seo^{3,4}, Alexie Leauthaud⁵, Jeremy L. Tinker⁶, Martin White^{1,7}

¹ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

² Hubble Fellow

³ Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA, 94720, USA

⁴ Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA

⁵ Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583

⁶ Center for Cosmology and Particle Physics, Department of Physics New York University, USA

⁷ Departments of Physics and Astronomy, University of California, Berkeley, CA, 94720, USA

2 August 2018

ABSTRACT

We perform the first fit to the anisotropic clustering of SDSS-III CMASS DR10 galaxies on scales of $\sim 0.8-32 \, h^{-1}$ Mpc. A standard halo occupation distribution model evaluated near the best fit Planck Λ CDM cosmology provides a good fit to the observed anisotropic clustering, and implies a normalization for the peculiar velocity field of $M \sim 2 \times 10^{13} h^{-1} M_{\odot}$ halos of $f\sigma_8(z = 0.57) = 0.450 \pm 0.011$. Since this constraint includes both quasi-linear and nonlinear scales, it should severely constrain modified gravity models that enhance pairwise infall velocities on these scales. Though model dependent, our measurement represents a factor of 2.5 improvement in precision over the analysis of DR11 on large scales, $f\sigma_8(z=0.57) =$ 0.447 ± 0.028 , and is the tightest single constraint on the growth rate of cosmic structure to date. Our measurement is consistent with the Planck ACDM prediction of 0.480 ± 0.010 at the ~ 1.9 σ level. Assuming a halo mass function evaluated at the best fit Planck cosmology, we also find that 10% of CMASS galaxies are satellites in halos of mass $M \sim 6 \times 10^{13}$ $h^{-1} M_{\odot}$. While none of our tests and model generalizations indicate systematic errors due to an insufficiently detailed model of the galaxy-halo connection, the precision of these first results warrant further investigation into the modeling uncertainties and degeneracies with cosmological parameters.

Key words: cosmology: large-scale structure of Universe, cosmological parameters, galaxies: haloes, statistics

- Reid et al. 2014 made a
 2.5% measurement of fo₈
 using small-scale
 clustering within the BOSS
 CMASS sample
- Found factor of 2.5 improvement in statistical error over large scales
- Systematics dominated by fixed cosmology modelling and fibre collision effect

WHAT DO YOU DO BETTER?

METHODS

PAIRWISE-INVERSE-PROBABILITY WEIGHTING (PIP)

- Inversely weight pairs by the probability of the pair being observed
- Combined with angular upweighting (ANG) to correct single-pass regions

$$DD(\vec{s}) = \sum w_{mn}^{\text{PIP}} w_m^{\text{tot}} w_n^{\text{tot}} \times \frac{DD_{\text{par}}(\theta)}{DD_{\text{fib}}^{\text{PIP}}(\theta)}$$

See Mohammad et al. 2020
 (2007.09005) for details

HALO OCCUPATION DISTRIBUTION (HOD)

- > Probability distribution P(N|M) that a halo of mass M contains N galaxies
- Our model separates the occupation of centrals and satellites, and depends on 5 free parameters

$$N_{cen}(M) = \frac{f_{max}}{2} \left[1 + \operatorname{erf}\left(\frac{\log_{10} M - \log_{10} M_{min}}{\sigma_{\log M}}\right) \right]$$
$$N_{sat}(M) = \left(\frac{M}{M_{sat}}\right)^{\alpha} \exp\left(-\frac{M_{cut}}{M}\right) \frac{N_{cen}(M)}{f_{max}}$$

AEMULUS COSMOLOGICAL EMULATOR

- Gaussian process based machine learning from N-body simulations to predict galaxy correlation functions to <1% without the need to run additional simulations each step
- 16 parameter model; 7 wCDM parameters and 9 HOD parameters

wCDM:
$$\Omega_m, \Omega_b, \sigma_8, h, n_s, N_{eff}, w$$

HOD: $\log M_{sat}$, α , $\log M_{cut}$, $\sigma_{\log M}$, f_{max} , v_{bc} , v_{bs} , c_{vir} , γ_f

- In the linear regime a fractional change in γ_f is equal to a fractional change in the linear growth rate, $f = \gamma_f f_{wCDM}$
- We keep N_{eff} , w fixed for a total of 14 free parameters

Divide survey into equal area regions, and remove regions with low occupation to ensure all regions contribute approximately equally and are not affected by geometry

$$C_{i,j} = \frac{n-1}{n} \sum_{k}^{n} (\xi_{i,k} - \bar{\xi}_{i})(\xi_{j,k} - \bar{\xi}_{j})$$

• Rescale covariance matrix by the ratio of $R_{assigned}/R_{full}$ to match effective volume of full sample

ROBUSTNESS CHECKS

GREAT. DOES IT WORK THOUGH?

NON-LINEAR VELOCITIES

- On linear scales a change in γ_f corresponds to a change in the growth rate, but this is not necessarily true on non-linear scales
- Identify $7 h^{-1}$ Mpc as the transition, so use 7 < r < 60 km/s to constrain $f\sigma_8$, and γ_f as a test of Λ CDM using 0.1 < r < 60 km/s

GALAXY SELECTION

- eBOSS is targeted using magnitude cuts, so some bright galaxies are excluded
- Without f_{max} the HOD model assumes all high mass halos contain a central galaxy, so that the model sample is more highly biased than the data sample

REDSHIFT UNCERTAINTY

- The eBOSS sample has a redshift uncertainty well fit by a Gaussian of width $\sigma = 91.8$ km/s, giving a mean offset of 65.6 km/s
- On non-linear scales the redshift uncertainty is similar to the halo velocities, giving a degeneracy with γ_f
- \blacktriangleright Correcting this bias would increase our tension with ΛCDM

MOCK TESTING

- Tested full pipeline using a SHAM mock
- Using a different galaxyhalo connection model shows that the HOD parameterization is robust
- Recovered the expected value of γ_f

GET TO THE INTERESTING PART ALREADY!

RESULTS

HEADLINE RESULTS

- Using 7 < r < 60 km/s measure $f\sigma_8(z = 0.737) = 0.408 \pm 0.038$, 1.4σ below the Planck2018 expectation and a factor of 1.7 better than the large scales
- \blacktriangleright Using 0.1 < r < 60 km/s measure γ_f = 0.767 \pm 0.052, 4.5 σ below the value for $\Lambda {\rm CDM}$

SCALE DEPENDENCE

- Small scales prefer a low value of γ_f and non-zero $v_{\rm bc}$
- Large scales prefer a larger value of γ_f and no degeneracy with $v_{\rm bc}$
- The non-linear scales drive the stronger tension from all scales

+ WATERLOO CENTRE FOR + ASTROPHYSICS

ALL FITS

Run	γ_f	N_P	N_D	χ^2
$0.1 - 60 h^{-1} Mpc$	0.767 ± 0.052	14	27	14.1
$0.1 - 7 h^{-1} Mpc$	0.71 ± 0.14	14	18	7.8
$0.8 - 60 h^{-1} \mathrm{Mpc}$	0.783 ± 0.066	14	18	4.2
$7 - 60 h^{-1} Mpc$	0.854 ± 0.083	14	9	0.36
$7 - 60 h^{-1}$ Mpc, 8 parameters	0.821 ± 0.064	8	9	0.74
$7 - 60 h^{-1}$ Mpc, 6 parameters	0.802 ± 0.050	6	9	1.8
$\xi_0 + \xi_2$	0.819 ± 0.073	14	18	5.0
$\xi_0 + w_p$	0.65 ± 0.11	14	18	5.4
$\gamma_f = 1$	1	13	27	28.0
$v_{bc} = 0$	0.958 ± 0.088	13	27	22.5
$f_{\max} = 1$	0.764 ± 0.051	13	27	16.6
Unsmoothed covariance matrix	0.767 ± 0.052	14	27	14.3
Scaled mock covariance matrix	0.766 ± 0.059	14	27	12.0
No training prior	0.85 ± 0.12	14	27	12.1
eBOSS+Planck18	0.784 ± 0.048	14*	27	18.5
eBOSS+Planck18 scaled σ_8	0.798 ± 0.047	14*	27	19.1
eBOSS+Planck18 free σ_8	0.766 ± 0.053	14*	27	18.0
No AP scaling	0.772 ± 0.053	14	27	14.5

COMPARISON TO OTHER SDSS RESULTS

COMPARISON TO LENSING

COMPARISON TO LENSING

COMPARISON TO LENSING

POTENTIAL IMPROVEMENTS

- Redshift uncertainty is a significant source of systematic uncertainty, especially at higher redshifts (DESI, Euclid)
- The uncertainty is limited by the emulator error in many measurement bins
- We make a conservative separation cut to isolate the linear information, but additional information could be extracted from non-linear scales
- The source of the tension from non-linear scales is unknown (baryonic physics, HOD model breakdown, new physics?)

SUMMARY

- We use PIP+ANG weights and Aemulus emulator remove the major systematics of previous analyses
- Measure $f\sigma_8(z = 0.737) = 0.408 \pm 0.038$, 1.4σ below the Planck2018 expectation and a factor of 1.7 better than the large scales
- Using 0.1 < r < 60 km/s find 4.5σ tension with Λ CDM
- Redshift uncertainty, impact of non-linear velocities, and breakdown of HOD model important for future analyses
- Contact me at mj3chapm@uwaterloo.ca with additional comments and questions!

EXTRA SLIDES

BUT WHAT ABOUT...?

SPECTROSCOPIC GALAXY SURVEYS

- Determine redshift from spectra of distant galaxies
- Redshifts are converted to distances assuming the recession is caused by the expansion of the Universe

$$d_C(z) = c \int_0^z \frac{dz'}{H(z')}$$

AEMULUS COSMOLOGICAL EMULATOR

- Gaussian process based machine learning from N-body simulations to predict galaxy correlation functions
- Latin hypercube efficiently samples cosmological parameter space
- Results accurate to <1% without the need to run additional simulations each step</p>

2D Projection of 7D parameter space, DeRose et al. 2018 (1804.05865)

- 1. Choose occupation threshold, N_t , desired number of regions, N_R , and estimated region size, l
- 2.Cover eBOSS footprint with equal area square regions of side length l
- 3. Remove all regions below occupation threshold ($N < N_t$)
- 4. If number of remaining regions, N_r , is greater than N_R proceed to Step 5, otherwise reduce l and repeat Steps 2-4

5. Remove lowest occupation regions until $N_r = N_R$

- Correlation matrix is highly diagonal so we smooth along the diagonals
- Combine with emulator error and apply Hartlap factor for final covariance matrix

Comparing diagonal elements using relative error and find agreement between data JK, 1000 mocks, and JK on mocks

AP SCALING

Corrects for difference between the true cosmology and the cosmology assumed for distance calculations

$$a_{\perp} = \frac{D_M(z_{\text{eff}})}{D_M^{\text{fid}}(z_{\text{eff}})} , \quad a_{\parallel} = \frac{D_H(z_{\text{eff}})}{D_H^{\text{fid}}(z_{\text{eff}})}$$
$$\xi_0^{\text{fid}}(r^{\text{fid}}) = \xi_0(\alpha r) + \frac{2}{5}\epsilon \left[3\xi_2(\alpha r) + \frac{d\xi_2(\alpha r)}{d\ln(r)} \right]$$
$$\xi_2^{\text{fid}}(r^{\text{fid}}) = (1 + \frac{6}{7}\epsilon)\xi_2(\alpha r) + 2\epsilon \frac{d\xi_0(\alpha r)}{d\ln(r)} + \frac{4}{7}\epsilon \frac{d\xi_2(\alpha r)}{d\ln(r)}$$
$$w_p^{\text{fid}}(r_p^{\text{fid}}) = w_p(a_{\perp}r_p)$$

EXPLORING THE LIKELIHOOD

- Use Cobaya MCMC sampler to explore the likelihood
- Use priors slightly larger than training range to detect poorly constrained parameters
- Test additional cosmological priors restricting parameters using a distance threshold from the training points and Planck2018 constraints

Parameter	Training Range	Prior Range
Ω_m	[0.255, 0.353]	[0.225, 0.375]
$\Omega_b h^2$	[0.039, 0.062]	[0.005, 0.1]
σ_8	[0.575, 0.964]	[0.5, 1]
h	[0.612, 0.748]	[0.58, 0.78]
n _s	[0.928, 0.997]	[0.8, 1.2]
$N_{\rm eff}$	[2.62, 4.28]	3.046
w	[-1.40, -0.57]	-1
$\log M_{\rm sat}$	[14.0, 16.0]	[13.8, 16.2]
α	[0.2, 2.0]	[0.1, 2.2]
$\log M_{\rm cut}$	[10.0, 13.7]	[11.5, 14]
$\sigma_{\log M}$	[0.1, 1.6]	[0.08, 1.7]
vbc	[0, 0.7]	[0, 0.85]
$v_{\rm bs}$	[0.2, 2.0]	[0.1, 2.2]
$c_{\rm vir}$	[0.2, 2.0]	[0.1, 2.2]
γ_f	[0.5, 1.5]	[0.25, 1.75]
$f_{\rm max}$	[0.1, 1]	[0.1, 1]

UCHUU

- Large, high resolution simulation with Rockstar halos
- $L_{box} = 2000 \ Mpc/h, 12800^3$ particles, $3.27 \times 10^8 M_{\odot}/h$
- Created HOD and SHAM mocks for robustness checks

vitor

HEADLINE RESULTS

- All well-constrained parameters are within the training range
- All cosmological parameters consistent with Planck2018
- Close to Gaussian
 constraints on
 parameters of interest

TESTING COSMOLOGICAL PRIORS

- Aemulus training prior restricts cosmological parameters to well trained region
- Tested combined fit with Planck2018
 TT+EE+TE+lensing likelihoods
- Find consistent constraints in all cases

MEASUREMENT DEPENDENCE

- Monopole and projected correlation function more strongly prefer non-zero
 ν_{bc} and low γ_f
- Multipoles prefer larger γ_f along degeneracy with $v_{\rm bc}$
- Combined fit occupies the overlap region

+ WATERLOO CENTRE FOR + ASTROPHYSICS

CMASS+EBOSS

- Additionally fit to a combined BOSS CMASS+eBOSS sample between 0.6 < z < 0.8
- Adding CMASS increases the number of objects and completeness, but skews n(z)
- HOD formalism assumes single population for entire sample

CMASS+EBOSS

